【題目】如圖,半徑為的圓形紙板內有一個相同圓心的半徑為的小圓,現(xiàn)將半徑為的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機落在紙板內,則硬幣與小圓無公共點的概率為( )

A. B. C. D.

【答案】D

【解析】由題意可得,硬幣要落在紙板內,硬幣圓心距離紙板圓心的距離應該小于4.硬幣與小圓無公共點,硬幣圓心距離小圓圓心要大于2,先求出硬幣落在紙板上的面積,然后再求解硬幣落下后與小圓沒交點的區(qū)域的面積,代入古典概率的計算公式可求

解答:解:記硬幣落下后與小圓無公共點為事件A

硬幣要落在紙板內,硬幣圓心距離紙板圓心的距離應該小于4,其面積為16π

無公共點也就意味著,硬幣的圓心與紙板的圓心相距超過2cm

以紙板的圓心為圓心,作一個半徑2cm的圓,硬幣的圓心在此圓外面,則硬幣與半徑為1cm的小圓無公共點

所以有公共點的概率為4/16

無公共點的概率為PA=1-4/16=3/4

故答案為D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點 上任意一點.

(1)求證: ;

(2)已知二面角的余弦值為,若的中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設bn= ,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的 , , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:

甲說:“作品獲得一等獎”

乙說:“作品獲得一等獎”

丙說:“, 兩項作品未獲得一等獎”

丁說:“作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產一種儀器的元件,由于受生產能力和技術水平的限制,會產生一些次品,根據(jù)經驗知道,其次品率P與日產量x(萬件)之間大體滿足關系: .(注:次品率=次品數(shù)/生產量,如P=0.1表示每生產10件產品,有1件為次品,其余為合格品).已知每生產1萬件合格的元件可以盈利2萬元,但每生產1萬件次品將虧損1萬元,故廠方希望定出合適的日產量.
(1)試將生產這種儀器的元件每天的盈利額T(萬元)表示為日產量x(萬件)的函數(shù);
(2)當日產量x為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|< )其中的圖象如圖所示,為了得到g(x)=cos(2x﹣ )的圖象,只需將f(x)的圖象(

A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國內某知名連鎖店分店開張營業(yè)期間,在固定的時間段內消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經理對開業(yè)前天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關關系.

(1)若從這天中隨機抽取兩天,求至少有天參加抽獎人數(shù)超過的概率;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程,并估計若該活動持續(xù)天,共有多少名顧客參加抽獎.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.

(1)求橢圓的方程;

(2)點在橢圓上,若點與點關于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù), ).

(Ⅰ)若直線和函數(shù)的圖象相切,求的值;

(Ⅱ)當時,若存在正實數(shù),使對任意,都有恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案