【題目】已知正方體ABCD﹣A1B1C1D1的棱AA1=2,求:

(1)求異面直線A1D與AC所成角的大;
(2)求四面體A1﹣DCA的體積.

【答案】
(1)解:如圖,A1D∥B1C,

則∠ACB1就是異面直線A1D與AC所成角.

在△ACB1中,AC=AB1=B1C,

則∠ACB1=60°,

因此異面直線A1D與AC所成角為60°


(2)解:四面體A1﹣DCA的體積V= =
【解析】(1)由已知中正方體ABCD﹣A1B1C1D1為棱長為2的正方體,結(jié)合正方體的幾何特征,我們易得∠ACB1就是異面直線A1D與AC所成角,△ACB1中為等邊三角形,即可得到異面直線A1D與AC所成角(2)根據(jù)三棱錐的體積公式進行求解即可.
【考點精析】利用異面直線及其所成的角對題目進行判斷即可得到答案,需要熟知異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+=0相切.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A,B,當時,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 點(n, )在直線y= x+ 上.
(1)求數(shù)列{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和為Tn , 并求使不等式Tn 對一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=2an+2n
(1)設bn= ,證明:數(shù)列{bn}是等差數(shù)列.
(2)求數(shù)列{an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a、b、c成等比數(shù)列,非零實數(shù)x,y分別是a與b,b與c的等差中項.
(1)已知 ①a=1、b=2、c=4,試計算 的值;
②a=﹣1、b= 、c=﹣ ,試計算 的值
(2)試推測 與2的大小關系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對同一類的 , , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:

甲說:“作品獲得一等獎”

乙說:“作品獲得一等獎”

丙說:“, 兩項作品未獲得一等獎”

丁說:“作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|< )其中的圖象如圖所示,為了得到g(x)=cos(2x﹣ )的圖象,只需將f(x)的圖象(

A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,公差,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

同步練習冊答案