【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________.
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)如圖,在四棱錐P—ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求點D到平面PBC的距離;
(2)設(shè)Q是線段BP上的動點,當直線CQ與DP所成的角最小時,求二面角B-CQ-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假定某射手射擊一次命中目標的概率為.現(xiàn)有4發(fā)子彈,該射手一旦射中目標,就停止射擊,否則就一直獨立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:
(1)X的概率分布;
(2)數(shù)學期望E(X).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),在以為極點,軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經(jīng)過極點的圓.已知曲線上的點對應(yīng)的參數(shù),射線與曲線交于點.
(Ⅰ)求曲線,的標準方程;
(Ⅱ)若點,在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結(jié)果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直角坐標系xoy中,橢圓的離心率為,過點.
(1)求橢圓C的方程;
(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.
①求直線的斜率;②若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)在甲、乙兩人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的.
(1)求袋中原有白球的個數(shù);
(2)求取球兩次終止的概率
(3)求甲取到白球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com