【題目】【2017廣東佛山二!磕潮kU公司針對企業(yè)職工推出一款意外險產(chǎn)品,每年每人只要交少量保費,發(fā)生意外后可一次性獲賠50萬元.保險公司把職工從事的所有崗位共分為、三類工種,根據(jù)歷史數(shù)據(jù)統(tǒng)計出三類工種的每賠付頻率如下表并以此估計賠付概率.

根據(jù)規(guī)定,該產(chǎn)品各工種保單的期望利潤都不得超過保費的20%,試分別確定各類工種每張保單保費的上限;

某企業(yè)共有職工20000人,從事三類工種的人數(shù)分布比例如圖,老板準備為全體職工每人購買一份此種保險,并以中計算的各類保險上限購買,試估計保險公司在這宗交易中的期望利潤.

【答案】見解析;元.

【解析】試題分析:I設工種每份保單的保費,則需賠付時,收入為,根據(jù)概率分布可計算出保費的期望值為,令解得.同理可求得工種保費的期望值;II按照每個工種的人數(shù)計算出份數(shù)然后乘以1得到的期望值,即為總的利潤.

試題解析:

設工種的每份保單保費為元,設保險公司每單的收益為隨機變量,則的分布列為

保險公司期望收益為

根據(jù)規(guī)則

解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據(jù)規(guī)則,解得元,

設工種的每份保單保費為元,賠付金期望值為元,則保險公司期望利潤為元,根據(jù)規(guī)則,解得元.

購買類產(chǎn)品的份數(shù)為份,

購買類產(chǎn)品的份數(shù)為份,

購買類產(chǎn)品的份數(shù)為份,

企業(yè)支付的總保費為元,

保險公司在這宗交易中的期望利潤為元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P是曲線C: ﹣y2=1上的任意一點,直線l:x=2與雙曲線C的漸近線交于A,B兩點,若 ,(λ,μ∈R,O為坐標原點),則下列不等式恒成立的是(
A.λ22
B.λ22≥2
C.λ22
D.λ22≤2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)表示相同函數(shù)的是(
A.f(x)= ,g(x)=( 2
B.f(x)=1,g(x)=x2
C.f(x)= ,g(t)=|t|
D.f(x)=x+1,g(x)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求點(a,b)的集合表示的平面區(qū)域的面積;
(2)若t=2+ ,(x<1且x≠0),求函數(shù)f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集為[﹣1,5],求b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017福建三明5月質檢】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確的是(
A. 的最小值是2
B. 的最小值是2
C. 的最小值是
D. 的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017江西上饒聯(lián)考】某種藥種植基地有兩處種植區(qū)的藥材需在下周一、周二兩天內采摘完畢,基地員工一天可以完成一處種植區(qū)的采摘,由于下雨會影響藥材的收益,若基地收益如下表所示:已知下周一和下周二無雨的概率相同且為,兩天是否下雨互不影響,若兩天都下雨的概率為

1及基地的預期收益;

2若該基地額外聘請工人,可在周一當天完成全部采摘任務,若周一無雨時收益為萬元,有雨時收益為萬元,且額外聘請工人的成本為元,問該基地是否應該額外聘請工人,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017重慶二診】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內也有大量好友參與了“微信運動”,他隨機選取了其中的40人男、女各20人,記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

1已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附:,

010

005

0025

0010

2706

3841

5024

6635

2若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn=n2 , {bn}為等比數(shù)列,且a1=b1 , b2(a2﹣a1)=b1
(1)求數(shù)列{an},{bn}的通項公式.
(2)設cn=anbn , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案