【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),證明: .
【答案】(1)當(dāng), 取得極小值;當(dāng)時(shí), 取得極大值;(2)見解析.
【解析】試題分析:(1)當(dāng)時(shí), ,求導(dǎo),然后利用求極值的一般步驟即可得到的極值;
(2)證明:當(dāng)時(shí), , ,
則證明上述不等式成立,即證明.
設(shè),利用導(dǎo)數(shù)研究的性質(zhì)可得.,
再令,利用導(dǎo)數(shù)研究的性質(zhì)可得所以,
所以,即.
試題解析:(1)當(dāng)時(shí), ,
,
當(dāng)時(shí), , 在上單調(diào)遞減;
當(dāng)時(shí), , 在上單調(diào)遞增;
當(dāng)時(shí), , 在上單調(diào)遞減.
所以,當(dāng), 取得極小值;
當(dāng)時(shí), 取得極大值.
(2)證明:當(dāng)時(shí), , ,
所以不等式可變?yōu)?/span>.
要證明上述不等式成立,即證明.
設(shè),則,
令,得,
在上, , 是減函數(shù);在上, , 是增函數(shù).
所以.
令,則,
在上, , 是增函數(shù);在上, , 是減函數(shù),
所以,
所以,即,即,
由此可知.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn .
(1)求p2的值;
(2)證明:pn> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1 , F2分別是長(zhǎng)軸長(zhǎng)為 的橢圓C: 的左右焦點(diǎn),A1 , A2是橢圓C的左右頂點(diǎn),P為橢圓上異于A1 , A2的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與OM的斜率之積恒為﹣ .
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)F1且不與坐標(biāo)軸垂直的直線C(2,2,0)交橢圓于A,B兩點(diǎn),線段AB的垂直平分線與B(2,0,0)軸交于點(diǎn)N,點(diǎn)N橫坐標(biāo)的取值范圍是 ,求線段AB長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,,是數(shù)列的前項(xiàng)的和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;
(3)是否存在,使得為數(shù)列中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查乘客的候車情況,公交公司在某為臺(tái)的名候車乘客中隨機(jī)抽取人,將他們的候車時(shí)間(單位:分鐘)作為樣本分成組,如下表所示:
組別 | 候車時(shí)間 | 人數(shù) |
一 | ||
二 | ||
三 | ||
四 | ||
五 |
(1)求這名乘客的平均候車時(shí)間;
(2)估計(jì)這名候車乘客中候車時(shí)間少于分鐘的人數(shù);
(3)若從上表第三、四組的人中隨機(jī)抽取人作進(jìn)一步的問卷調(diào)查,求抽到的兩人恰好來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F(1,0),點(diǎn)A是直線l1:x=﹣1上的動(dòng)點(diǎn),過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點(diǎn)P.
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)若點(diǎn)M,N是直線l1上兩個(gè)不同的點(diǎn),且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)銷某商品,顧客可以采用一次性付款或分期付款購買,根據(jù)以往資料統(tǒng)計(jì),顧客采用一次性付款的概率是,經(jīng)銷件該產(chǎn)品,若顧客采用一次性付款,商場(chǎng)獲得利潤(rùn)元;若顧客采用分期付款,商場(chǎng)獲得利潤(rùn)元.
(Ⅰ)求位購買商品的顧客中至少有位采用一次性付款的概率.
(Ⅱ)若位顧客每人購買件該商品,求商場(chǎng)獲得利潤(rùn)不超過元的概率.
(Ⅲ)若位顧客每人購買件該商品,設(shè)商場(chǎng)獲得的利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線為, 與軸的交點(diǎn)坐標(biāo)為,求的值;
(2)討論的單調(diào)性.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com