【題目】定義滿足如果aA,bA,那么a±bAabA,A(b≠0)”的集合A閉集試問數(shù)集N,Z,QR是否分別為閉集?若是請說明理由;若不是請舉反例說明.

【答案】數(shù)集N,Z不是閉集,數(shù)集Q,R閉集舉反例見解析

【解析】試題分析:根據(jù)給出的閉集的定義,驗證給出的集合是否滿足如果aA,bA那么a±bA,abA,A(b≠0)”即可得到結(jié)論。

試題解析

(1)數(shù)集N,Z不是閉集,

例如,3N,2N,而1.5N;

3Z,-2Z,=-1.5Z,故N,Z不是閉集.

(2)數(shù)集QR閉集

由于兩個有理數(shù)ab的和,差,積,商,

a±b,ab, (b≠0)仍是有理數(shù),

Q是閉集.

同理R也是閉集.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8.

有時可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān).

1) 證明:當(dāng)時,掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若上為增函數(shù),求實數(shù)的取值范圍;

(2)當(dāng)時,函數(shù)有零點,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·重慶高二檢測)如圖三棱柱ABC-A1B1C1,側(cè)棱垂直底面ACB=90°,AC=BC=AA1D是棱AA1的中點.

(1)證明平面BDC1⊥平面BDC.

(2)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為xx≥10)層,則每平方米的平均建筑費用為56048x(單位:元).

1)寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=購地總費用/建筑總面積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0<x<1,a>0且a≠1,試比較|loga(1-x)|與|loga(1+x)|的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),若存在距離為的兩條直線,使得對任意都有恒成立,則稱函數(shù)有一個寬度為的通道,給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度可以為1的函數(shù)的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)的圖象經(jīng)過P3,4)點,求a的值;

2)比較大小,并寫出比較過程;

3)若,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (R)

(1) ,求函數(shù)的極值;

2)是否存在實數(shù)使得函數(shù)在區(qū)間上有兩個零點,若存在,求出的取值范圍;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案