【題目】已知函數(shù)f(x)=lnx﹣tx+t.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)t=2時(shí),方程f(x)=m﹣ax恰有兩個(gè)不相等的實(shí)數(shù)根x1,x2,證明:.
【答案】(1)當(dāng)t≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增;當(dāng)t>0時(shí),f(x)在(0,)上單調(diào)遞增,在(,+∞)上單調(diào)遞減;(2)證明見解析.
【解析】
(1)求導(dǎo)后分和兩種情況討論極值點(diǎn)的大小關(guān)系以及導(dǎo)函數(shù)的正負(fù),進(jìn)而求得原函數(shù)的單調(diào)區(qū)間即可.
(2)代入,根據(jù)f(x)=m﹣ax,可得的兩根分別為,再消去化簡得到,再代入所證的,換元令,進(jìn)而求導(dǎo)分析導(dǎo)數(shù)的正負(fù)以及原函數(shù)的單調(diào)性即可.
(1)f(x)的定義域?yàn)椋?/span>0,+∞),f′(x),
當(dāng)t≤0時(shí),f′(x)>0恒成立,f(x)在(0,+∞)上單調(diào)遞增,
當(dāng)t>0時(shí),令f′(x)>0,得0<x,令f′(x)<0,得x.
∴f(x)在(0,)上單調(diào)遞增,在(,+∞)上單調(diào)遞減.
綜上所述,當(dāng)t≤0時(shí),f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)t>0時(shí),f(x)在(0,)上單調(diào)遞增,在(,+∞)上單調(diào)遞減.
(2)證明:由f(x)=m﹣ax,得lnx+(a﹣2)x+2﹣m=0.
令g(x)=lnx+(a﹣2)x+2,則g(x1)=g(x2)=m.
即lnx1+(a﹣2)x1=lnx2+(a﹣2)x2,
∴a﹣2.
不妨設(shè)0<x1<x2,要證,
只需證2(2﹣a),即證.
令(c>1),g(c)=2lnc﹣c,
∵g′(c)0.
∴g(c)在(1,+∞)上單調(diào)遞減,則g(c)<g(1)=0.
故成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的一臺某型號機(jī)器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機(jī)器處于故障狀態(tài),則停機(jī)檢修.為了檢查機(jī)器工作狀態(tài)是否正常,工廠隨機(jī)統(tǒng)計(jì)了該機(jī)器以往正常工作狀態(tài)下生產(chǎn)的1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值,得出如圖1所示頻率分布直方圖.由統(tǒng)計(jì)結(jié)果可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的平均數(shù),近似為這1000個(gè)產(chǎn)品的質(zhì)量指標(biāo)值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值為代表).若產(chǎn)品的質(zhì)量指標(biāo)值全部在之內(nèi),就認(rèn)為機(jī)器處于正常狀態(tài),否則,認(rèn)為機(jī)器處于故障狀態(tài).
(1)下面是檢驗(yàn)員在一天內(nèi)從該機(jī)器生產(chǎn)的產(chǎn)品中隨機(jī)抽取10件測得的質(zhì)量指標(biāo)值:
29 45 55 63 67 73 78 87 93 113
請判斷該機(jī)器是否出現(xiàn)故障?
(2)若機(jī)器出現(xiàn)故障,有2種檢修方案可供選擇:
方案一:加急檢修,檢修公司會在當(dāng)天排除故障,費(fèi)用為700元;
方案二:常規(guī)檢修,檢修公司會在七天內(nèi)的任意一天來排除故障,費(fèi)用為200元.
現(xiàn)需決策在機(jī)器出現(xiàn)故障時(shí),該工廠選擇何種方案進(jìn)行檢修,為此搜集檢修公司對該型號機(jī)器近100單常規(guī)檢修在第i(,2,…,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機(jī)器正常工作一天可收益200元,故障機(jī)器檢修當(dāng)天不工作,若機(jī)器出現(xiàn)故障,該選擇哪種檢修方案?
附:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市現(xiàn)有人口總數(shù)為萬人,如果年自然增長率為,試解答下列問題:
(1)寫出該城市經(jīng)過年后的人口總數(shù)關(guān)于的函數(shù)關(guān)系式;
(2)用程序流程圖表示計(jì)算年以后該城市人口總數(shù)的算法;
(3)用程序流程圖表示如下算法:計(jì)算大約多少年以后該城市人口將達(dá)到萬人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,,,,,邊上一點(diǎn),這里異于.由引邊的垂線是垂足,再由引邊的垂線是垂足,又由引邊的垂線是垂足.同樣的操作連續(xù)進(jìn)行,得到點(diǎn),,.設(shè),如圖所示.
(1)求的值;
(2)某同學(xué)對上述已知條件的研究發(fā)現(xiàn)如下結(jié)論:,問該同學(xué)這個(gè)結(jié)論是否正確并說明理由;
(3)用和表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】著名數(shù)學(xué)家華羅庚先生曾說過:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微數(shù)形結(jié)合百般好,隔裂分家萬事休.”在數(shù)學(xué)的學(xué)習(xí)和研究中,我們經(jīng)常用函數(shù)的圖象來研究函數(shù)的性質(zhì),也經(jīng)常用函數(shù)的解析式來琢磨函數(shù)的圖象的特征,如某體育品牌的LOGO為,可抽象為如圖所示的軸對稱的優(yōu)美曲線,下列函數(shù)中,其圖象大致可“完美”局部表達(dá)這條曲線的函數(shù)是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列關(guān)系式,算出數(shù)列的前4項(xiàng),然后猜想它的通項(xiàng),并用數(shù)學(xué)歸納法證明你的猜想.
(1);
(2);
(3).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變),再將所得到的圖像向右平移個(gè)單位長度.
(Ⅰ)求函數(shù)的解析式,并求其圖像的對稱軸方程;
(Ⅱ)已知關(guān)于的方程在內(nèi)有兩個(gè)不同的解.
(1)求實(shí)數(shù)m的取值范圍;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐中,底面為菱形,平面, 為上一點(diǎn),為菱形對角線的交點(diǎn).
(Ⅰ)證明:平面平面;
(Ⅱ)若,四棱錐的體積是四棱錐的體積的,求二面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com