【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費(fèi)比例 | 1 |
該公司從注冊(cè)的會(huì)員中,隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) |
假設(shè)汽車美容一次,公司成本為元.根據(jù)所給數(shù)據(jù),解答下列問(wèn)題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(3)該公司從至少消費(fèi)兩次的顧客中按消費(fèi)次數(shù)用分層抽樣方法抽出8人,再?gòu)倪@8人中抽出2人發(fā)放紀(jì)念品.求抽出的2人中恰有1人消費(fèi)兩次的概率.
【答案】(1);(2)公司這兩次服務(wù)的平均利潤(rùn)為元;(3)抽出的2人中恰有1人消費(fèi)兩次的概率.
【解析】
(1)至少消費(fèi)兩次的會(huì)員有40人,根據(jù)概率公式;(2)分別求出兩次消費(fèi)為公司獲得的利潤(rùn),然后求平均值即可;(3) 利用列舉法列舉出從這8人中抽出2人發(fā)放紀(jì)念品的事件數(shù),以及求抽出的2人中恰有1人消費(fèi)兩次的事件數(shù),根據(jù)古典概型的概率公式求解即可.
(1)100位會(huì)員中,至少消費(fèi)兩次有40人,
所以估計(jì)一位會(huì)員至少消費(fèi)兩次的
概率為;
(2)該會(huì)員第1次消費(fèi)時(shí),公司獲得利潤(rùn)為(元),
第2次消費(fèi)時(shí),公司獲得利潤(rùn)為(元),
所以,公司這兩次服務(wù)的平均利潤(rùn)為(元);
(3)至少消費(fèi)兩次的會(huì)員中,消費(fèi)次數(shù)分別為2,3,4,5的比例為,
所以抽出的8人中,消費(fèi)2次的有4人,設(shè)為,,,,
消費(fèi)3次的有2人,設(shè)為,,消費(fèi)4次和5次的各有1人,分別設(shè)為,,
從中取2人,取到的有:,,,,,,共7種;
去掉后,取到的有:,,,,,共6種;
去掉,,,,,后,取到的有:共1種;
總的取法有種,
其中恰有1人消費(fèi)兩次的取法共有:種,
所以,抽出的2人中恰有1人消費(fèi)兩次的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A=120°,AB=5,BC=,則AC的值為________.
【答案】2
【解析】
利用余弦定理可得關(guān)于AC的方程,解之即可.
由余弦定理可知cosA===﹣,
解得AC=2或﹣7(舍去)
故答案為:2
【點(diǎn)睛】
對(duì)于余弦定理一定要熟記兩種形式:(1);(2).另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還要記住, , 等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.
【題型】填空題
【結(jié)束】
15
【題目】“嫦娥奔月,舉國(guó)歡慶”,據(jù)科學(xué)計(jì)算,運(yùn)載“神六”的“長(zhǎng)征二號(hào)”系列火箭,在點(diǎn)火第一秒鐘通過(guò)的路程為2 km,以后每秒鐘通過(guò)的路程都增加2 km,在達(dá)到離地面210 km的高度時(shí),火箭與飛船分離,則這一過(guò)程大約需要的時(shí)間是______秒.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中不正確的是( )
A. 平面∥平面,一條直線平行于平面,則一定平行于平面
B. 平面∥平面,則內(nèi)的任意一條直線都平行于平面
C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行
D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中,,前項(xiàng)和滿足條件,
(1)求數(shù)列的通項(xiàng)公式和;
(2)記,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花壇AMPN,要求B點(diǎn)在AM上,D點(diǎn)在AN上,且對(duì)角線MN過(guò)點(diǎn)C,已知AB=2米,AD=1米.
(1)要使矩形AMPN的面積大于9平方米,則DN的長(zhǎng)應(yīng)在什么范圍內(nèi)?
(2)當(dāng)DN的長(zhǎng)度為多少時(shí),矩形花壇AMPN的面積最?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx(a>0),e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若過(guò)點(diǎn)A(2,f(2))的切線斜率為2,求實(shí)數(shù)a的值;
(Ⅱ)當(dāng)x>0時(shí),求證:f(x)≥a(1﹣);
(Ⅲ)在區(qū)間(1,e)上>1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) , 是兩個(gè)非零向量,則下列哪個(gè)描述是正確的( 。
A.若|+|=||﹣||,則⊥
B.若⊥ , 則|+|=||﹣||
C.若|+|=||﹣||,則存在實(shí)數(shù)λ使得=
D.若存在實(shí)數(shù)λ使得= , 則|+|=||﹣||
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com