【題目】下列命題中不正確的是( )
A. 平面∥平面,一條直線平行于平面,則一定平行于平面
B. 平面∥平面,則內(nèi)的任意一條直線都平行于平面
C. 一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行
D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線
【答案】A
【解析】
逐一考查所給的選項(xiàng)是否正確即可.
逐一考查所給的選項(xiàng):
A. 平面∥平面,一條直線平行于平面,可能a在平面內(nèi)或與相交,不一定平行于平面,題中說(shuō)法錯(cuò)誤;
B. 由面面平行的定義可知:若平面∥平面,則內(nèi)的任意一條直線都平行于平面,題中說(shuō)法正確;
C. 由面面平行的判定定理可得:若一個(gè)三角形有兩條邊所在的直線分別平行于一個(gè)平面,那么該三角形所在的平面與這個(gè)平面平行,題中說(shuō)法正確;
D. 分別在兩個(gè)平行平面內(nèi)的兩條直線只能是平行直線或異面直線,不可能相交,題中說(shuō)法正確.
本題選擇A選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對(duì)此空間圖形解答下列問(wèn)題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長(zhǎng);
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的方程有兩個(gè)不等的負(fù)根;關(guān)于的方程無(wú)實(shí)根,若為真,為假,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=+k(+lnx)(k為常數(shù)).
(1)當(dāng)k=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)k≥0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高三年級(jí)從甲(文)乙(理)兩個(gè)年級(jí)組各選出7名學(xué)生參加高校自主招生數(shù)學(xué)選拔考試,他們?nèi)〉玫某煽?jī)(滿分:100分)的莖葉圖如圖所示,其中甲組學(xué)生的平均分是85分,乙組學(xué)生成績(jī)的中位數(shù)是83分.
(1)求x和y的值;
(2)從成績(jī)?cè)?0分以上的學(xué)生中隨機(jī)取兩名學(xué)生,求甲組至少有一名學(xué)生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半徑為1的圓O內(nèi)切于正方形ABCD,正六邊形EFGHPR內(nèi)接于圓O,當(dāng)EFGHPR繞圓心O旋轉(zhuǎn)時(shí),的取值范圍是( 。
A.[1﹣ , 1+]
B.[﹣1- , ﹣1+]
C.[﹣ , +]
D.[-﹣ , -+]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的外接圓半徑,角A、B、C的對(duì)邊分別是a、b、c,且.
(I)求角B和邊長(zhǎng)b;
(II)求面積的最大值及取得最大值時(shí)的a、c的值,并判斷此時(shí)三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動(dòng):對(duì)首次消費(fèi)的顧客,按200元/次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員逐次消費(fèi)給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費(fèi)比例 | 1 |
該公司從注冊(cè)的會(huì)員中,隨機(jī)抽取了位進(jìn)行統(tǒng)計(jì),得到統(tǒng)計(jì)數(shù)據(jù)如下:
消費(fèi)次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) |
假設(shè)汽車美容一次,公司成本為元.根據(jù)所給數(shù)據(jù),解答下列問(wèn)題:
(1)估計(jì)該公司一位會(huì)員至少消費(fèi)兩次的概率;
(2)某會(huì)員僅消費(fèi)兩次,求這兩次消費(fèi)中,公司獲得的平均利潤(rùn);
(3)該公司從至少消費(fèi)兩次的顧客中按消費(fèi)次數(shù)用分層抽樣方法抽出8人,再?gòu)倪@8人中抽出2人發(fā)放紀(jì)念品.求抽出的2人中恰有1人消費(fèi)兩次的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cos θ.
(1)求出圓C的直角坐標(biāo)方程;
(2)已知圓C與x軸相交于A,B兩點(diǎn),直線l:y=2x關(guān)于點(diǎn)M(0,m)(m≠0)對(duì)稱的直線為l′.若直線l′上存在點(diǎn)P使得∠APB=90°,求實(shí)數(shù)m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com