【題目】某學校研究性學習小組對該校高三學生視力情況進行調(diào)查,在高三的全體名學生中隨機抽取了名學生的體檢表,并得到如圖的頻率分布直方圖.
年級名次 是否近視 | ||
近視 | ||
不近視 |
(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在以下的人數(shù);
(2)學習小組成員發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關(guān)系,對年級名次在名和名的學生進行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下認為視力與學習成績有關(guān)系?
(3)在(Ⅱ)中調(diào)查的名學生中,按照分層抽樣在不近視的學生中抽取了人,進一步調(diào)查他們良好的護眼習慣,并且在這人中任取人,記名次在的學生人數(shù)為,求的分布列和數(shù)學期望.
7.879 |
附:
【答案】(1)820;(2) 在犯錯誤的概率不超過的前提下認為視力與學習成績有關(guān)系.(3)答案見解析.
【解析】試題分析:(1)利用直方圖中的前幾個數(shù)據(jù)和等差數(shù)列得到后四組的頻數(shù),再估計其頻率和人數(shù);(2)先利用公式進行求解,再利用臨界值表進行求解;(3)寫出隨機變量的所有可能取值,利用超幾何分布的概率公式求出相應的概率,再列表得到分布列,進而求出數(shù)學期望 .
試題解析:(1)由直方圖可知,第一組有3人,第二組有7人,第三組有27人,
因為后四組的頻數(shù)成等差數(shù)列,所以后四組的頻數(shù)依次為27,24,21,18,所以視力
在以下的頻率為,故全年級視力在以下的人數(shù)約為.
(2),
因此在犯錯誤的概率不超過的前提下認為視力與學習成績有關(guān)系.
(3)依題意9人中年級名次在名和名分別有3人和6人,
可取0、1、2、3
, ,
,
的分布列為
0 | 1 | 2 | 3 | |
的數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】某試驗田分別種植了甲乙兩種水稻,為了研究這兩種水稻的產(chǎn)量,抽檢了甲、乙兩種水稻的谷穗各1000株.經(jīng)統(tǒng)計,得到每株谷穗的粒數(shù)的頻率分布直方圖如圖:
(Ⅰ)求乙種水稻谷穗的粒數(shù)落在[325,375)之間的頻率,并將頻率分布直方圖補齊;
(Ⅱ)試根據(jù)頻率分布直方圖估計甲種水稻谷穗粒數(shù)的中位數(shù)與平均數(shù)(精確到0.1);
(Ⅲ)根據(jù)頻率分布直方圖,請至少從兩方面對甲乙兩種水稻谷穗的粒數(shù)作出評價.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+ ),
(1)判斷并證明函數(shù)y=f(x)的奇偶性;
(2)判斷并證明函數(shù)y=f(x)在R上的單調(diào)性;
(3)當x∈[1,2]時,不等式f(a4x)+f(2x+1)>0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)一動點與兩定點和連線的斜率之積等于.
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)直線: ()與軌跡交于、兩點,線段的垂直平分線交軸于點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知焦點在x正半軸上,頂點為坐標系原點的拋物線過點A(1,﹣2).
(1)求拋物線的標準方程;
(2)過拋物線的焦點F的直線l與拋物線交于兩點M、N,且△MNO(O為原點)的面積為2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)函數(shù)的圖象能否與軸相切?若能與軸相切,求實數(shù)的值;否則,請說明理由;
(2)若函數(shù)在上單調(diào)遞增,求實數(shù)能取到的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解高一期末數(shù)學考試的情況,從高一的所有學生數(shù)學試卷中隨機抽取n份試卷進行成績分析,得到數(shù)學成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學生人數(shù)為6.
(Ⅰ)求直方圖中x的值;
(Ⅱ)試估計所抽取的數(shù)學成績的平均數(shù);
(Ⅲ)試根據(jù)樣本估計“該校高一學生期末數(shù)學考試成績≥70”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場一年購進某種貨物900噸,每次都購進x噸,運費為每次9萬元,一年的總存儲費用為9x萬元.
(1)要使一年的總運費與總存儲費用之和最小,則每次購買多少噸?
(2)要使一年的總運費與總存儲費用之和不超過585萬元,則每次購買量在什么范圍?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com