【題目】在平面直角坐標(biāo)系中,已知圓錐曲線的參數(shù)方程為(為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,求圓錐曲線的極坐標(biāo)方程;
(2)若直線l過(guò)曲線的焦點(diǎn)且傾斜角為60°,求直線l被圓錐曲線所截得的線段的長(zhǎng)度.
【答案】(1);(2).
【解析】
(1)先將曲線C的參數(shù)方程化為普通方程,再將代入即可得到答案.
(2)由題意直線l的參數(shù)方程為:(為參數(shù)),代入橢圓的直角坐標(biāo)方程可得:,設(shè)為方程的兩個(gè)根,則,,然后直線l被圓錐曲線所截得的線段的長(zhǎng)度為.
(1)因?yàn)閳A錐曲線的參數(shù)方程為(為參數(shù))
所以其普通方程為
將代入可得圓錐曲線的極坐標(biāo)方程為
(2)曲線的焦點(diǎn)坐標(biāo)為,
若直線l過(guò)曲線的焦點(diǎn)(過(guò)時(shí)解相同)且傾斜角為60°,
則可得直線l的參數(shù)方程為:(為參數(shù)),
將直線的參數(shù)方程代入橢圓的直角坐標(biāo)方程可得:,
設(shè)為方程的兩個(gè)根,則,
所以直線l被圓錐曲線所截得的線段的長(zhǎng)度為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年3月份,上海出臺(tái)了《關(guān)于建立完善本市生活垃圾全程分類體系的實(shí)施方案》,4月份又出臺(tái)了《上海市生活垃圾全程分類體系建設(shè)行動(dòng)計(jì)劃(2018-2020年)》,提出到2020年底,基本實(shí)現(xiàn)單位生活垃圾強(qiáng)制分類全覆蓋,居民區(qū)普遍推行生活垃圾分類制度.為加強(qiáng)社區(qū)居民的垃圾分類意識(shí),推動(dòng)社區(qū)垃圾分類正確投放,某社區(qū)在健身廣場(chǎng)舉辦了“垃圾分類,從我做起”生活垃圾分類大型宣傳活動(dòng),號(hào)召社區(qū)居民用實(shí)際行動(dòng)為建設(shè)綠色家園貢獻(xiàn)一份力量,為此需要征集一部分垃圾分類志愿者.
(1)為調(diào)查社區(qū)居民喜歡擔(dān)任垃圾分類志愿者是否與性別有關(guān),現(xiàn)隨機(jī)選取了一部分社區(qū)居民進(jìn)行調(diào)查,其中被調(diào)查的男性居民和女性居民人數(shù)相同,男性居民中不喜歡擔(dān)任垃圾分類志愿者占男性居民的,女性居民中不喜歡擔(dān)任垃圾分類志愿者占女性居民的,若研究得到在犯錯(cuò)誤概率不超過(guò)0.010的前提下,認(rèn)為居民喜歡擔(dān)任垃圾分類志愿者與性別有關(guān),則被調(diào)查的女性居民至少多少人?
附,,
0.100 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)某垃圾站的日垃圾分揀量(千克)與垃圾分類志愿者人數(shù)(人)滿足回歸直線方程,數(shù)據(jù)統(tǒng)計(jì)如下:
志愿者人數(shù)(人) | 2 | 3 | 4 | 5 | 6 |
日垃圾分揀量(千克) | 25 | 30 | 40 | 45 |
已知,,,根據(jù)所給數(shù)據(jù)求和回歸直線方程,附:,.
(3)用(2)中所求的線性回歸方程得到與對(duì)應(yīng)的日垃圾分揀量的估計(jì)值.當(dāng)分揀數(shù)據(jù)與估計(jì)值滿足時(shí),則將分揀數(shù)據(jù)稱為一個(gè)“正常數(shù)據(jù)”.現(xiàn)從5個(gè)分揀數(shù)據(jù)中任取3個(gè),記表示取得“正常數(shù)據(jù)”的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)由正四棱錐和正四棱柱構(gòu)成的組合體,正四棱錐的側(cè)棱長(zhǎng)為6,為正四棱錐高的4倍.當(dāng)該組合體的體積最大時(shí),點(diǎn)到正四棱柱外接球表面的最小距離是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某工廠的一個(gè)車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:cm)落在各個(gè)小組的頻數(shù)分布如下表:
數(shù)據(jù)分組 | [12.5,15.5) | [15.5,18.5) | [18.5,21.5) | [21.5,24.5) | [24.5,27.5) | [27.5,30.5) | [30.5,33.5) |
頻數(shù) | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在[27.5,33.5]內(nèi)的概率;
(2)求這50件產(chǎn)品尺寸的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)頻數(shù)分布對(duì)應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求().
附:(1)若隨機(jī)變量服從正態(tài)分布,則;(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)用4種不同的顏色對(duì)如圖所示的正方形的6個(gè)區(qū)域進(jìn)行涂色,要求相鄰的區(qū)域不能涂同一種顏色,則不同的涂色方案有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,,且對(duì)任意n,恒成立.
(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)設(shè),已知,,(2<i<j)成等差數(shù)列,求正整數(shù)i,j.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌布娃娃做促銷活動(dòng):已知有50個(gè)布娃娃,其中一些布娃娃里面有獎(jiǎng)品,參與者可以先在50個(gè)布娃娃中購(gòu)買5個(gè),看完5個(gè)布娃娃里面的結(jié)果再?zèng)Q定是否將剩下的布娃娃全部購(gòu)買,設(shè)每個(gè)布娃娃有獎(jiǎng)品的概率為,且各個(gè)布娃娃是否有獎(jiǎng)品相互獨(dú)立.
(1)記5個(gè)布娃娃中有1個(gè)有獎(jiǎng)品的概率為,當(dāng)時(shí),的最大值,求;
(2)假如這5個(gè)布娃娃中恰有1個(gè)有獎(jiǎng)品,以上問(wèn)中的作為p的值.已知每次購(gòu)買布娃娃需要2元,若有中獎(jiǎng),則中獎(jiǎng)?wù)呙看慰傻锚?jiǎng)金15元.以最終獎(jiǎng)金的期望作為決策依據(jù),是否該買下剩下所有的45個(gè)布娃娃;
(3)若已知50件布娃娃中有10個(gè)布娃娃有獎(jiǎng)品,從這堆布娃娃中任意購(gòu)買5個(gè),若抽到k個(gè)有獎(jiǎng)品可能性最大,求k的值.(k為正整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場(chǎng)的選手性別不同且表演的節(jié)目不同,則不同的出場(chǎng)方式的種數(shù)為( )
A.6B.12C.18D.24
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com