【題目】如圖,在折線中,,,分別是的中點,若折線上滿足條件的點至少有個,則實數(shù)的取值范圍是___________.
【答案】
【解析】
以BC的垂直平分線為y軸,以BC為x軸,建立如圖所示的平面直角坐標系,分別表示各個點的坐標,設P(x,y),根據(jù)向量的數(shù)量積可得當k+9>0時,點P的軌跡為以(0,)為圓心,以為半徑的圓,結(jié)合圖象,即可求出滿足條件的點P至少有4個的k的取值范圍.
解:以BC的垂直平分線為y軸,以BC為x軸,建立如圖所示的平面直角坐標系,
∵AB=BC=CD=4,∠ABC=∠BCD=120°,
∴B(﹣2.0),C(2,0),A(﹣4,2),D(4,2),
∵E、F分別是AB、CD的中點,
∴E(﹣3,),F(3,),
設P(x,y),﹣4≤x≤4,0≤y≤2,
∵,
∴(﹣3﹣x,(3﹣x,y)=,
即,
當k+9>0時,點P的軌跡為以(0,)為圓心,以為半徑的圓,
當圓與直線DC相切時,此時圓的半徑r,此時點有2個,
當圓經(jīng)過點C時,此時圓的半徑為r,此時點P有4個,
∵滿足條件的點P至少有4個,結(jié)合圖象可得,
∴k+9≤7,
解得k≤﹣2,
故實數(shù)k的取值范圍為[,﹣2],
故答案為:[,﹣2]
科目:高中數(shù)學 來源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買x臺機器人的總成本為萬元.
(1)若使每臺機器人的平均成本最低,問應買多少臺?
(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排m人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀(如圖).經(jīng)實驗知,每臺機器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)若對任意的,恒成立,求實數(shù)的取值范圍;
(2)若的最小值為,求實數(shù)的值;
(3)若對任意實數(shù)、、,均存在以、、為三邊邊長的三角形,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:極坐標與參數(shù)方程
已知在平面直角坐標系xOy中,O為坐標原點,曲線C: (α為參數(shù)),在以平面直角坐標系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標系,直線l:ρ.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程;
(Ⅱ)曲線C上恰好存在三個不同的點到直線l的距離相等,分別求出這三個點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數(shù)獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業(yè)作出了較大的貢獻,公司還獲得了相應的廣告效益.據(jù)測算,首日參與活動人數(shù)為人,以后每天人數(shù)比前一天都增加,天后捐步人數(shù)穩(wěn)定在第天的水平,假設此項活動的啟動資金為萬元,每位捐步者每天可以使公司收益元(以下人數(shù)精確到人,收益精確到元).
(1)求活動開始后第天的捐步人數(shù),及前天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)的“微信健步走”活動情況,現(xiàn)用分層抽樣的方法從中抽取老、中、青三個年齡段人員進行問卷調(diào)查.已知抽取的樣本同時滿足以下三個條件:
(i)老年人的人數(shù)多于中年人的人數(shù);
(ii)中年人的人數(shù)多于青年人的人數(shù);
(iii)青年人的人數(shù)的兩倍多于老年人的人數(shù).
①若青年人的人數(shù)為4,則中年人的人數(shù)的最大值為___________.
②抽取的總?cè)藬?shù)的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項,則a-x也是數(shù)列{an}中的一項,稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項數(shù)是n0(n0≥3),所有項之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對于一個不少于3項,且各項皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com