【題目】實(shí)驗(yàn)杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時(shí)間內(nèi)戰(zhàn)平,直接進(jìn)入點(diǎn)球決勝環(huán)節(jié),在點(diǎn)球決勝環(huán)節(jié)中,雙方首先輪流罰點(diǎn)球三輪,罰中更多點(diǎn)球的球隊(duì)獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點(diǎn)球決勝,即雙方各派處一名隊(duì)員罰點(diǎn)球,直至分出勝負(fù);在前三輪罰球中,若某一時(shí)刻勝負(fù)已分,尚未出場的隊(duì)員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場).由于一班同學(xué)平時(shí)踢球熱情較高,每位隊(duì)員罰點(diǎn)球的命中率都能達(dá)到0.8,而二班隊(duì)員的點(diǎn)球命中串只有0.5,比賽時(shí)通過抽簽決定一班在每一輪都先罰球.
(1)定義事件為“一班第三位同學(xué)沒能出場罰球”,求事件發(fā)生的概率;
(2)若兩隊(duì)在前三輪點(diǎn)球結(jié)束后打平,則進(jìn)入一對一點(diǎn)球決勝,一對一球決勝由沒有在之前點(diǎn)球大戰(zhàn)中出場過的隊(duì)員主罰點(diǎn)球,若在一對一點(diǎn)球決勝的某一輪中,某對隊(duì)員射入點(diǎn)球且另一隊(duì)員未能射入,則比賽結(jié)束;若兩名隊(duì)員均射入或者均射失點(diǎn)球,則進(jìn)行下一輪比賽. 若直至雙方場上每名隊(duì)員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負(fù),本場比賽中若已知雙方在點(diǎn)球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對一點(diǎn)球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2000多年前,古希臘大數(shù)學(xué)家阿波羅尼奧斯((Apollonius)發(fā)現(xiàn):平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為, 為地面直徑,頂角為,那么不過頂點(diǎn)的平面;與夾角時(shí),截口曲線為橢圓;與夾角時(shí),截口曲線為拋物線;與夾角時(shí),截口曲線為雙曲線.如圖,底面內(nèi)的直線,過的平面截圓錐得到的曲線為橢圓,其中與的交點(diǎn)為,可知為長軸.那么當(dāng)在線段上運(yùn)動(dòng)時(shí),截口曲線的短軸頂點(diǎn)的軌跡為( )
A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)數(shù)的單調(diào)增區(qū)間;
(2)若f(α)= ,α∈(0, ),求cosα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠ .
(1)求c;
(2)若C= ,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上.
(1)求證:EF⊥平面PAC;
(2)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017廣東佛山二!已知橢圓: ()的焦距為4,左、右焦點(diǎn)分別為、,且與拋物線: 的交點(diǎn)所在的直線經(jīng)過.
(Ⅰ)求橢圓的方程;
(Ⅱ)過的直線與交于, 兩點(diǎn),與拋物線無公共點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,sin2B=2sinAsinC.
(1)若a=b,求cosB的值;
(2)若B=60°,△ABC的面積為4 ,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣3|﹣|x﹣a|.
(1)當(dāng)a=2時(shí),解不等式f(x)≤﹣ ;
(2)若存在實(shí)數(shù)x,使得不等式f(x)≥a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)對任意的x都滿足f(x+1)=﹣f(x),當(dāng)﹣1≤x<1時(shí),f(x)=x3 , 若函數(shù)g(x)=f(x)﹣loga|x|至少6個(gè)零點(diǎn),則a取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com