【題目】設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知4sinA=4cosBsinC+bsin2C,且C≠
(1)求c;
(2)若C= ,求△ABC周長的取值范圍.

【答案】
(1)解:4sinA=4cosBsinC+bsin2C,

4sin(B+C)=4cosBsinC+2bsinCcosC,

4sinBcosC+4cosBsinC=4cosBsinC+2bsinCcosC,

4sinBcosC=2bsinCcosC,

4sinB=2bsinC,(C≠ ,cosB≠0)

4b=2bc,(

c=2


(2)解:∵C= , ,

∴△ABC周長l=a+b+c=2+ sinA+ sinB

=2+ sinA+ sin( ﹣A)

=2+ sin(A+ ),

∵0 , <A+ ,

∴sin(A+ )∈( ,1],

∴△ABC周長l=2+ sin(A+ )∈(4,2+ ]


【解析】(1)利用三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,化簡已知等式可得4sinB=2bsinC,利用正弦定理可求4b=2bc,從而解得c的值.(2)由正弦定理 ,可得△ABC周長l=2+ sinA+ sinB=2+ sin(A+ ),利用正弦函數(shù)的圖象和性質(zhì)即可得解.
【考點精析】認(rèn)真審題,首先需要了解正弦定理的定義(正弦定理:),還要掌握余弦定理的定義(余弦定理:;;)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】423日是世界讀書日,為提高學(xué)生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學(xué)生會開展了主題為讓閱讀成為習(xí)慣,讓思考伴隨人生的實踐活動,校學(xué)生會實踐部的同學(xué)隨即抽查了學(xué)校的40名高一學(xué)生,通過調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來了解在校高一學(xué)生的讀書習(xí)慣,得到如表列聯(lián)表:

喜歡讀紙質(zhì)書

不喜歡讀紙質(zhì)書

合計

16

4

20

8

12

20

合計

24

16

40

(Ⅰ)根據(jù)如表,能否有99%的把握認(rèn)為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?

(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學(xué)生中隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其數(shù)學(xué)期望E(ξ).

參考公式:K2=,其中n=a+b+c+d.

下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進(jìn)入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負(fù);在前三輪罰球中,若某一時刻勝負(fù)已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場).由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達(dá)到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒能出場罰球”,求事件發(fā)生的概率;

(2)若兩隊在前三輪點球結(jié)束后打平,則進(jìn)入一對一點球決勝,一對一球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進(jìn)行下一輪比賽. 若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負(fù),本場比賽中若已知雙方在點球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對一點球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若2sinA+sinB= sinC,則角A的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“數(shù)列{an}成等比數(shù)列”是“數(shù)列{lgan+1}成等差數(shù)列”的(
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】福利彩票“雙色球”中紅球的號碼可以從01,02,03,…,32,33這33個二位號碼中選取,小明利用如圖所示的隨機(jī)數(shù)表選取紅色球的6個號碼,選取方法是從第1行第9列和第10列的數(shù)字開始從左到右依次選取兩個數(shù)字,則第四個被選中的紅色球號碼為( )

81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85

06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49

A. 12 B. 33 C. 06 D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實驗杯足球賽采用七人制淘汰賽規(guī)則,某場比賽中一班與二班在常規(guī)時間內(nèi)戰(zhàn)平,直接進(jìn)入點球決勝環(huán)節(jié),在點球決勝環(huán)節(jié)中,雙方首先輪流罰點球三輪,罰中更多點球的球隊獲勝;若雙方在三輪罰球中未分勝負(fù),則需要進(jìn)行一對一的點球決勝,即雙方各派處一名隊員罰點球,直至分出勝負(fù);在前三輪罰球中,若某一時刻勝負(fù)已分,尚未出場的隊員無需出場罰球(例如一班在先罰球的情況下,一班前兩輪均命中,二班前兩輪未能命中,則一班、二班的第三位同學(xué)無需出場).由于一班同學(xué)平時踢球熱情較高,每位隊員罰點球的命中率都能達(dá)到0.8,而二班隊員的點球命中串只有0.5,比賽時通過抽簽決定一班在每一輪都先罰球.

(1)定義事件為“一班第三位同學(xué)沒能出場罰球”,求事件發(fā)生的概率;

(2)若兩隊在前三輪點球結(jié)束后打平,則進(jìn)入一對一點球決勝,一對一球決勝由沒有在之前點球大戰(zhàn)中出場過的隊員主罰點球,若在一對一點球決勝的某一輪中,某對隊員射入點球且另一隊員未能射入,則比賽結(jié)束;若兩名隊員均射入或者均射失點球,則進(jìn)行下一輪比賽. 若直至雙方場上每名隊員都已經(jīng)出場罰球,則比賽亦結(jié)束,雙方通過抽簽決定勝負(fù),本場比賽中若已知雙方在點球大戰(zhàn),以隨機(jī)變量記錄雙方進(jìn)行一對一點球決勝的輪數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某展覽館用同種規(guī)格的木條制作如圖所示的展示框,其內(nèi)框與外框均為矩形,并用木條相互連結(jié),連結(jié)木條與所連框邊均垂直.水平方向的連結(jié)木條長均為8cm,豎直方向的連結(jié)木條長均為4cm,內(nèi)框矩形的面積為3200cm2 . (不計木料的粗細(xì)與接頭處損耗)

(1)如何設(shè)計外框的長與寬,才能使外框矩形面積最小?
(2)如何設(shè)計外框的長與寬,才能使制作整個展示框所用木條最少?

查看答案和解析>>

同步練習(xí)冊答案