【題目】已知以點為圓心的圓過點,線段的垂直平分線交圓于點,,

(1)求直線的方程; (2)求圓的方程。

(3)設點在圓上,試探究使的面積為 8 的點共有幾個?證明你的結論

【答案】(1);(2);(3)2

【解析】分析:(1)根據(jù)直線是線段的垂直平分線的方程,求出線段中點坐標和直線的斜率,即可解直線的方程;

(2)設圓心,則由上得又直徑,,求得,分別代入,即可求解圓的方程;

(3),由三角形的面積公式,得點到直線的距離,再由圓心到直線的距離得圓的半徑,進而得到面積結論.

詳解:(1)∵,的中點坐標為

∴直線的方程為:

(2)設圓心,則由上得

又直徑,∴

①代入②消去,解得

,當∴圓心

∴圓的方程為:

(3)∵

∴當面積為 8 時,點到直線的距離為

又圓心到直線的距離為,圓的半徑,且

∴圓上共有兩個點,使的面積為 8

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=cosx的圖象與直線x= ,x= 以及x軸所圍成的圖形的面積為a,則(x﹣ )(2x﹣ 5的展開式中的常數(shù)項為(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線 過坐標原點 ,圓 的方程為
(1)當直線 的斜率為 時,求 與圓 相交所得的弦長;
(2)設直線 與圓 交于兩點 ,且 的中點,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的頂點在原點 ,對稱軸是 軸,且過點 .
(Ⅰ)求拋物線 的方程;
(Ⅱ)已知斜率為 的直線 軸于點 ,且與曲線 相切于點 ,點 在曲線 上,且直線 軸, 關于點 的對稱點為 ,判斷點 是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與y軸交于O,A兩點,圓C2過O,A兩點,且直線C2O與圓C1相切;

(1)求圓C2的方程;

(2)若圓C2上一動點M,直線MO與圓C1的另一交點為N,在平面內是否存在定點P使得PM=PN始終成立,若存在求出定點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在單位圓上的 中,角 的對邊分別為 ,且 .
(1)求 的值;
(2)若 ,求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)若對 ,f(x) 恒成立,求a的取值范圍;
(2)已知常數(shù)a R,解關于x的不等式f(x) .

查看答案和解析>>

同步練習冊答案