【題目】如圖,斜三棱柱中,側(cè)面與側(cè)面都是菱形,

)求證:

(Ⅱ)若,求直線與平面所成角的正弦值.

【答案】)證明見解析;(.

【解析】試題分析:()根據(jù)題設(shè)條件,證明,得到平面,即可證明;()以為原點(diǎn),分別以所在直線為軸,建立空間直角坐標(biāo)系,求得平面的一個(gè)法向量,即可利用向量所成的角,得出直線與平面所成的角.

試題解析:()連接,因?yàn)閭?cè)面與側(cè)面都是菱形,

,所以都是等邊三角形.

的中點(diǎn),連接,則

平面, ,所以平面

又因?yàn)?/span>平面,

所以.

)在中, ,若,則有,

所以

由()有平面

為原點(diǎn),分別以所在直線為軸,

建立空間直角坐標(biāo)系,

, ,

設(shè)平面的一個(gè)法向量為,則

整理,得

,得,

設(shè)直線與平面所成的角為,則

.

所以直線與平面所成的角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某校5個(gè)學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)绫?

學(xué)生的編號(hào)i

1

2

3

4

5

數(shù)學(xué)xi

80

75

70

65

60

物理yi

70

66

68

64

62

(Ⅰ)假設(shè)在對(duì)這5名學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)時(shí),把這5名學(xué)生的物理成績(jī)搞亂了,數(shù)學(xué)成績(jī)沒出現(xiàn)問(wèn)題,問(wèn):恰有2名學(xué)生的物理成績(jī)是自己的實(shí)際分?jǐn)?shù)的概率是多少?
(Ⅱ)通過(guò)大量事實(shí)證明發(fā)現(xiàn),一個(gè)學(xué)生的數(shù)學(xué)成績(jī)和物理成績(jī)具有很強(qiáng)的線性相關(guān)關(guān)系的,在上述表格是正確的前提下,用x表示數(shù)學(xué)成績(jī),用y表示物理成績(jī),求y與x的回歸方程;
參考公式: =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3﹣2ax2+3a2x+b(a>0).
(1)當(dāng)y=f(x)的極小值為1時(shí),求b的值;
(2)若f(x)在區(qū)間[1,2]上是減函數(shù),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx﹣ )+1(A>0,ω>0)的最大值為3,其圖象的相鄰兩條對(duì)稱軸之間的距離為
(1)求函數(shù)f(x)對(duì)稱中心的坐標(biāo);
(2)求函數(shù)f(x)在區(qū)間[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)設(shè)z=1+i(i是虛數(shù)單位),求 +z2的值; (Ⅱ)設(shè)x,y∈R,復(fù)數(shù)z=x+yi,且滿足|z|2+(z+ )i= ,試求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m是實(shí)數(shù),f(x)=m﹣ (x∈R)
(1)若函數(shù)f(x)為奇函數(shù),求m的值;
(2)試用定義證明:對(duì)于任意m,f(x)在R上為單調(diào)遞增函數(shù);
(3)若函數(shù)f(x)為奇函數(shù),且不等式f(k3x)+f(3x﹣9x﹣2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過(guò)定點(diǎn)(1,0);
②已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2﹣|x|;
③若 ,則a的取值范圍是
其中所有正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】偶函數(shù)y=f(x)在區(qū)間[﹣4,0]上單調(diào)遞增,則有(
A.f(﹣1)>f( )>f(﹣π)
B.f( )>f(﹣1)>f(﹣π)
C.f(﹣π)>f(﹣1)>f(
D.f(﹣1)>f(﹣π)>f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣(2a+1)x+2lnx(a≥0)
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)求y=f(x)在區(qū)間(0,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案