精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2x+b經過定點(2,8)
(1)求實數b的值;
(2)求不等式f(x)> 的解集.

【答案】
(1)解:∵函數f(x)=2x+b經過定點(2,8),

∴22+b=8,即2+b=3,b=1


(2)解:由(1)得,f(x)=2x+1,

由f(x)> ,得

∴x+1 ,即x

∴不等式f(x)> 的解集為(


【解析】(1)把已知點的坐標代入函數解析式,求解指數方程可得b的值;(2)由指數函數的單調性化指數不等式為一次不等式求解.
【考點精析】本題主要考查了指、對數不等式的解法的相關知識點,需要掌握指數不等式的解法規(guī)律:根據指數函數的性質轉化;對數不等式的解法規(guī)律:根據對數函數的性質轉化才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數, .

(1)當時,求的單調區(qū)間;

(2)當時,若對任意,都有成立,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責任道路交通事故

下浮10%

上兩個年度未發(fā)生責任道路交通事故

下浮20%

上三個及以上年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任道路交通事故

上浮10%

上一個年度發(fā)生有責任道路交通死亡事故

上浮30%

某機購為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

數量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事用戶車盈利10000元,且各種投保類型車的頻率與上述機構調查的頻率一致,完成下列問題:

①若該銷售商店內有六輛(車齡已滿三年)該品牌二手車,某顧客欲在店內隨機挑選兩輛車,求這兩輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數)

(1)若,討論的單調性;

(2)若對任意的,都存在使得不等式成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數)

(1)若,討論的單調性;

(2)若對任意的,都存在使得不等式成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】目前我國城市的空氣污染越來越嚴重,空氣質量指數一直居高不下,對人體的呼吸系統(tǒng)造成了嚴重的影響,現(xiàn)調查了某城市500名居民的工作場所和呼吸系統(tǒng)健康,得到列聯(lián)表如下:

室外工作

室內工作

合計

有呼吸系統(tǒng)疾病

150

無呼吸系統(tǒng)疾病

100

合計

200

(Ⅰ)請把列聯(lián)表補充完整;

(Ⅱ)你是否有95%的把握認為感染呼吸系統(tǒng)疾病與工作場所有關;

(Ⅲ)現(xiàn)采用分層抽樣從室內工作的居民中抽取一個容量為6的樣本,將該樣本看成一個總體,從中隨機抽取2人,求2人都有呼吸系統(tǒng)疾病的概率.

參考公式與臨界表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平行四邊形OABC中,點C(1,3).
(1)求OC所在直線的斜率;
(2)過點C作CD⊥AB于點D,求CD所在直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=x2﹣16x+q+3
(1)若函數在區(qū)間[﹣1,1]上存在零點,求實數q的取值范圍;
(2)問:是否存在常數q(0<q<10),使得當x∈[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,四個頂點構成的菱形的面積是4,圓過橢圓的上頂點作圓的兩條切線分別與橢圓相交于兩點(不同于點),直線的斜率分別為.

(1)求橢圓的方程;

(2)當變化時,①求的值;②試問直線是否過某個定點?若是,求出該定點;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案