【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】李克強總理在2018年政府工作報告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢,深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,不斷增強經(jīng)濟創(chuàng)新力和競爭力.某手機生產(chǎn)企業(yè)積極響應政府號召,大力研發(fā)新產(chǎn)品,爭創(chuàng)世界名牌.為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(千元) | ||||||
銷量(百件) |
已知.
(1)若變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對應的產(chǎn)品銷量的估計值.
(參考公式:線性回歸方程中的估計值分別為)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)有小學21所,中學14所,現(xiàn)采用分層抽樣的方法從這些學校中抽取5所學校,對學生進行視力檢查.
(1)求應從小學、中學中分別抽取的學校數(shù)目;
(2)若從抽取的5所學校中抽取2所學校作進一步數(shù)據(jù)
①列出所有可能抽取的結(jié)果;
②求抽取的2所學校至少有一所中學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有人用三段論進行推理:“函數(shù) 的導函數(shù) 的零點即為函數(shù)的極值點,函數(shù) 的導函數(shù)的零點為 ,所以 是函數(shù) 的極值點 ”,上面的推理錯誤的是( )
A. 大前提 B. 小前提 C. 推理形式 D. 以上都是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,點 P的極坐標是 ,曲線 C的極坐標方程為 .以極點為坐標原點,極軸為 x軸的正半軸建立平面直角坐標系,斜率為﹣1的直線 l經(jīng)過點P.
(1)寫出直線 l的參數(shù)方程和曲線 C的直角坐標方程;
(2)若直線 l和曲線C相交于兩點A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1的棱長為1,點E,F(xiàn)分別是棱D1C1 , B1C1的中點,過E,F(xiàn)作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為( )
A.三角形
B.四邊形
C.五邊形
D.六邊形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:已知函數(shù)
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線的斜率為﹣6,求實數(shù)a;
(Ⅱ)若a=1,求f(x)的極值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某射手射擊1次,擊中目標的概率是0.9,他連續(xù)射擊4次,且他各次射擊是否擊中目標相互之間沒有影響.有下列結(jié)論:
①他第3次擊中目標的概率是0.9; ②他恰好擊中目標3次的概率是0.93×0.1;
③他至少擊中目標1次的概率是1-0.14 ④他恰好有連續(xù)2次擊中目標的概率為3×0.93×0.1
其中正確結(jié)論的序號是______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com