【題目】有人用三段論進(jìn)行推理:“函數(shù) 的導(dǎo)函數(shù) 的零點(diǎn)即為函數(shù)的極值點(diǎn),函數(shù) 的導(dǎo)函數(shù)的零點(diǎn)為 ,所以 是函數(shù) 的極值點(diǎn) ”,上面的推理錯誤的是( )

A. 大前提 B. 小前提 C. 推理形式 D. 以上都是

【答案】A

【解析】分析:在使用三段論推理證明中,如果命題是錯誤的,則可能是“大前提”錯誤,也可能是“小前提”錯誤,也可能是推理形式錯誤,我們分析的其大前提的形式:“函數(shù) 的導(dǎo)函數(shù) 的零點(diǎn)即為函數(shù)的極值點(diǎn)”,不難得到結(jié)論.

詳解:大前提是:“函數(shù) 的導(dǎo)函數(shù) 的零點(diǎn)即為函數(shù)的極值點(diǎn),”,不是真命題,

因?yàn)閷τ诳蓪?dǎo)函數(shù)f(x),如果(x0)=0,且滿足當(dāng)x=x0附近的導(dǎo)函數(shù)值異號時,那么x=x0是函數(shù)f(x)的極值點(diǎn),

大前提錯誤,

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當(dāng)a=2時,試求函數(shù)圖線過點(diǎn)(1,f(1))的切線方程;
(Ⅱ)當(dāng)a=1時,若關(guān)于x的方程f(x)=x+b有唯一實(shí)數(shù)解,試求實(shí)數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個極值點(diǎn)x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號召,某貧困縣在精準(zhǔn)推進(jìn)上下實(shí)功,在在精準(zhǔn)落實(shí)上見實(shí)效現(xiàn)從全縣扶貧對象中隨機(jī)抽取人對扶貧工作的滿意度進(jìn)行調(diào)查,以莖葉圖中記錄了他們對扶貧工作滿意度的分?jǐn)?shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分?jǐn)?shù)低于平均分)、“滿意”(分?jǐn)?shù)不低于平均分且低于分)和“很滿意”(分?jǐn)?shù)不低于分)三個級別.

(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;

(2)從“滿意”和“很滿意”的人中隨機(jī)抽取人,求至少有人是“很滿意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過點(diǎn)的直線與圓交于兩點(diǎn)

1)若,求直線的方程;

2)若直線軸交于點(diǎn),設(shè),,,R,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(1)當(dāng)時,求上的單調(diào)區(qū)間;

(2)設(shè)函數(shù),當(dāng)有兩個極值點(diǎn)時,總有,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求經(jīng)過直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月25日第23屆冬季奧動會在韓國平昌閉幕,中國以銅的成績結(jié)束本次冬奧會的征程,某校體育愛好者協(xié)會對某班進(jìn)行了“本屆冬奧會中國隊(duì)表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),按分層抽樣從該班學(xué)生中隨機(jī)抽取了人,具體的調(diào)查結(jié)果如下表:

某班

滿意

不滿意

男生

女生

(1)若該班女生人數(shù)比男生人數(shù)多人,求該班男生人數(shù)和女生人數(shù);

(2)若從該班調(diào)查對象的女生中隨機(jī)選取人進(jìn)行追蹤調(diào)查,記選中的人中“滿意”的人數(shù)為,求時對應(yīng)事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°,
(1)證明:DC⊥AB;
(2)若點(diǎn)C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市組織了一次高二調(diào)研考試,考試后統(tǒng)計(jì)的數(shù)學(xué)成績服從正態(tài)分布,其密度函數(shù), x(-∞,+∞),則下列命題不正確的是( )

A. 該市這次考試的數(shù)學(xué)平均成績?yōu)?/span>80

B. 分?jǐn)?shù)在120分以上的人數(shù)與分?jǐn)?shù)在60分以下的人數(shù)相同

C. 分?jǐn)?shù)在110分以上的人數(shù)與分?jǐn)?shù)在50分以下的人數(shù)相同

D. 該市這次考試的數(shù)學(xué)成績標(biāo)準(zhǔn)差為10

查看答案和解析>>

同步練習(xí)冊答案