【題目】正方體ABCD﹣A1B1C1D1的棱長為1,點E,F(xiàn)分別是棱D1C1 , B1C1的中點,過E,F(xiàn)作一平面α,使得平面α∥平面AB1D1 , 則平面α截正方體的表面所得平面圖形為( )
A.三角形
B.四邊形
C.五邊形
D.六邊形
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“ALS冰桶挑戰(zhàn)賽”是一項社交網(wǎng)絡(luò)上發(fā)起的籌款活動,活動規(guī)定:被邀請者要么在24小時內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動.若被邀請者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請另外3個人參與這項活動.假設(shè)每個人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某參與者接受挑戰(zhàn)后,對其他3個人發(fā)出邀請,則這3個人中至少有2個人接受挑戰(zhàn)的概率是多少?
(2)為了解冰桶挑戰(zhàn)賽與受邀請的性別是否有關(guān),某調(diào)查機(jī)構(gòu)進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:
接受挑戰(zhàn) | 不接受挑戰(zhàn) | 合計 | |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
合計 | 70 | 30 | 100 |
根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過0.1的前提下認(rèn)為“冰桶挑戰(zhàn)賽與受邀請者的性別有關(guān)”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過點的直線與圓交于兩點,.
(1)若,求直線的方程;
(2)若直線與軸交于點,設(shè),,,R,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月25日第23屆冬季奧動會在韓國平昌閉幕,中國以金銀銅的成績結(jié)束本次冬奧會的征程,某校體育愛好者協(xié)會對某班進(jìn)行了“本屆冬奧會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),按分層抽樣從該班學(xué)生中隨機(jī)抽取了人,具體的調(diào)查結(jié)果如下表:
某班 | 滿意 | 不滿意 |
男生 | ||
女生 |
(1)若該班女生人數(shù)比男生人數(shù)多人,求該班男生人數(shù)和女生人數(shù);
(2)若從該班調(diào)查對象的女生中隨機(jī)選取人進(jìn)行追蹤調(diào)查,記選中的人中“滿意”的人數(shù)為,求時對應(yīng)事件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)模式的改變,電商已成為當(dāng)今城鄉(xiāng)種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據(jù)往年的銷售資料,得到該商品一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現(xiàn)以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;
(2)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區(qū)間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長為2的正三角形,∠DBA=60°, .
(1)證明:DC⊥AB;
(2)若點C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研課題組通過一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補(bǔ)全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計該市每位跑步愛好者購買裝備,平均需要花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù).
(1)寫出該函數(shù)的頂點坐標(biāo);
(2)如果該函數(shù)在區(qū)間上的最小值為,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com