下列四個條件中,能確定一個平面的只有      (填序號).
①空間中的三點     ②空間中兩條直線      ③一條直線和一個點    ④兩條平行直線

④.

解析試題分析:①選項中可確定1個或4個;②選項中若兩條直線是異面直線的話就不能確定一個平面;③選項中點要在直線外才能確定一條直線.只有④是正確的.
考點:確定平面的幾何要素.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,在正方體中,點是棱上的一個動點,平面交棱于點.給出下列四個結(jié)論:

①存在點,使得//平面
②存在點,使得平面
③對于任意的點,平面平面
④對于任意的點,四棱錐的體積均不變.
其中,所有正確結(jié)論的序號是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在棱長為1的正方體ABCD—A1B1C1D1中,M、N分別是AC1、A1B1的中點.點P 在正方體的表面上運(yùn)動,則總能使垂直的點所構(gòu)成的軌跡的周長等于            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在正方形中,的中點,是側(cè)面內(nèi)的動點且//平面,則與平面所成角的正切值得取值范圍為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

以正方體的任意4個頂點為頂點的幾何形體有             
①空間四邊形;
②每個面都是等邊三角形的四面體;
③最多三個面是直角三角形的四面體;
④有三個面為等腰直角三角形,有一個面為等邊三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

正四棱錐S-ABCD的底面邊長為2,高為2,E是邊BC的中點,動點P在表面上運(yùn)動,并且總保持PE⊥AC,則動點P的軌跡的周長為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖所示,ABCD-A1B1C1D1是棱長為a的正方體,M,N分別是下底面的棱A1B1,B1C1的中點,P是上底面的棱AD上的一點,AP=,過P,M,N的平面交上底面于PQ,Q在CD上,則PQ=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在正方體ABCD-A1B1C1D1中,下面結(jié)論中正確的是________(把正確結(jié)論的序號都填上).
BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(5分)設(shè)P1,P2,…Pn為平面α內(nèi)的n個點,在平面α內(nèi)的所有點中,若點P到點P1,P2,…Pn的距離之和最小,則稱點P為P1,P2,…Pn的一個“中位點”,例如,線段AB上的任意點都是端點A,B的中位點,現(xiàn)有下列命題:
①若三個點A、B、C共線,C在線段AB上,則C是A,B,C的中位點;
②直角三角形斜邊的中點是該直角三角形三個頂點的中位點;
③若四個點A、B、C、D共線,則它們的中位點存在且唯一;
④梯形對角線的交點是該梯形四個頂點的唯一中位點.
其中的真命題是   (寫出所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案