【題目】已知定義在區(qū)間上的函數(shù)的圖象關(guān)于直線對稱,當(dāng)時,函數(shù).
(1)求,的值;
(2)求的表達(dá)式;
(3)若關(guān)于的方程有解,那么將方程在取某一確定值時所求得的所有解的和記為,求的所有可能值及相應(yīng)的取值范圍.
【答案】(1)(2),(3)①,②,③,④
【解析】
分析:(1)已知定義在區(qū)間[,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x=對稱,我們易得,結(jié)合條件等式即可得解,(2)根據(jù)在區(qū)間[,π]上的函數(shù)y=f(x)的圖象關(guān)于直線x=對稱, 我們可以根據(jù)函數(shù)圖像對稱變化的法則得出在的解析式,進(jìn)而得出表達(dá)式.(3)作出函數(shù)的圖像,分析函數(shù)圖像得到函數(shù)的性質(zhì),分類討論后,結(jié)合方程在a取某一直時所求得的所有解的和即為,即可得到答案.
詳解:(1)=sinπ=0,=sin=.
(2)由關(guān)于直線對稱,
當(dāng)時,,
則
(3)出函數(shù)圖像:,顯然,若有解,則,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)過點(e是自然對數(shù)的底數(shù))作函數(shù)圖象的切線l,求直線l的方程;
(2)求函數(shù)在區(qū)間()上的最大值;
(3)若,且對任意恒成立,求k的最大值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中點,F是DC上的點且DF=AB,PH為△PAD邊上的高.
(1)證明:PH⊥平面ABCD;
(2)若PH=1,AD=,FC=1,求三棱錐E-BCF的體積;
(3)證明:EF⊥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為a,分別是棱、的中點,過點的平面分別與棱、交于點,設(shè),,給出以下四個命題:
(1)平面與平面所成角的最大值為;
(2)四邊形的面積的最小值為;
(3)四棱錐的體積為;
(4)點到平面的距離的最大值為,
其中正確的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,底面為直角梯形,,分別為中點,且,.
(1)平面;
(2)若為線段上一點,且平面,求的值;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺為宣傳本省,隨機對本省內(nèi)15~65歲的人群抽取了人,回答問題“本省內(nèi)著名旅游景點有哪些”統(tǒng)計結(jié)果如圖表所示.
組號 | 分組 | 回答正確的人數(shù) | 回答正確的人數(shù)占本組的頻率 |
第1組 | |||
第2組 | 18 | ||
第3組 | |||
第4組 | |||
第5組 |
(1)分別求出的值;
(2)從第2、3、4組回答正確的人中用分層抽樣的方法抽取6人,求第2、3、4組每組各抽取多少人?
(3)指出直方圖中,這組數(shù)據(jù)的中位數(shù)是多少(取整數(shù)值)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點P,則當(dāng)實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為( )
A.2B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com