【題目】函數(shù)f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),則abcd的取值范圍是( )
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=cos2x﹣ sin2x,把y=f(x)的圖象向左平移φ(φ>0)個(gè)單位后,恰好得到函數(shù)g(x)=﹣cos2x﹣ sin2x的圖象,則φ的值可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a>0),
(1)當(dāng)a=1,b=2,若|f(x)|﹣2=0有且只有兩個(gè)不同的實(shí)根,求實(shí)數(shù)c的取值范圍;
(2)設(shè)方程f(x)=x的兩個(gè)實(shí)根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1> ,試判斷f(t)與x1的大小,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).記Sn=a1+a2+…+an . Tn= + +…+ .求證:當(dāng)n∈N*時(shí)
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱椎P﹣ABC中,PA=PB=PC=AC=4,AB=BC=2 .
(1)求證:平面ABC⊥平面APC.
(2)若動點(diǎn)M在底面三角形ABC內(nèi)(包括邊界)運(yùn)動,使二面角M﹣PA﹣C的余弦值為 ,求此時(shí)∠MAB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,四邊形為等腰梯形, , , ,四邊形為正方形,平面平面.
(1)若點(diǎn)是棱的中點(diǎn),求證: 平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時(shí)間(年)(其中)的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門通過實(shí)時(shí)監(jiān)控比值(其中為常數(shù),且)來進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時(shí),求比值取最小值時(shí)的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當(dāng)比值不超過時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.(為自然對數(shù)的底, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了普及奧運(yùn)會知識和提高學(xué)生參加體育運(yùn)動的積極性,舉行了一次奧運(yùn)知識競賽.隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學(xué)生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學(xué)生中,甲組學(xué)生中有男生7人,乙組學(xué)生中有女生12人,試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(Ⅱ)記甲組學(xué)生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學(xué)生小張、小李同時(shí)回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨(dú)立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學(xué)期望.
附:K2= ;其中n=a+b+c+d
獨(dú)立性檢驗(yàn)臨界表:
P(K2>k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com