【題目】天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機(jī)模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機(jī)數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機(jī)模擬試驗產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,這三天中恰有兩天下雨的概率近似為

A.0.35 B.0.25 C.0.20 D.0.15

【答案】B

【解析】

試題分析:由題意知模擬三天中恰有兩天下雨的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù),

在20組隨機(jī)數(shù)中表示三天中恰有兩天下雨的有:191、271、932、812、393,共5組隨機(jī)數(shù),

所求概率為 =0.25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在研究塞卡病毒Zika virus某種疫苗的過程中,為了研究小白鼠連續(xù)接種該種疫苗后出現(xiàn)癥狀的情況,做接種試驗,試驗設(shè)計每天接種一次連續(xù)接種3天為一個接種周期已知小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān)

1若出現(xiàn)癥狀即停止試驗,求試驗至多持續(xù)一個接種周期的概率;

2若在一個接種周期內(nèi)出現(xiàn)2次貨3次癥狀,則這個接種周期結(jié)束后終止試驗,試驗至多持續(xù)3個周期,設(shè)接種試驗持續(xù)的接種周期數(shù)為,的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={1,2,4},B={x|x2-4xm=0}.若AB={1},則B=(  )

A. {1,-3} B. {1,0}

C. {1,3} D. {1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如下圖示.

求直方圖中的值;

求月平均用電量的眾數(shù)和中位數(shù);

在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】口袋內(nèi)裝有大小相同的紅球、白球和黑球,從中摸出一個球,摸出紅球的概率是0.42,摸出白球的概率是0.28,則摸出黑球的概率是( )

A. 0.42 B. 0.28 C. 0.7 D. 0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C過點0,2,其焦點為F1,0,F(xiàn)2,0).

1求橢圓C的標(biāo)準(zhǔn)方程;

2已知點P在橢圓C上,且PF1=4,求△PF1F2的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在與軸交點處的切線方程為.

1求實數(shù)的值;

2若函數(shù)的極小值為,求實數(shù)的值;

3若對任意的,不等式恒成立, 則實數(shù)的取值范

圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程.

(1是從 個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有

實根的概率;

(2)是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩個角___

查看答案和解析>>

同步練習(xí)冊答案