【題目】已知?jiǎng)狱c(diǎn)P到定點(diǎn)F(1,0)和到直線x=2的距離之比為,設(shè)動(dòng)點(diǎn)P的軌跡為曲線E,過(guò)點(diǎn)F作垂直于x軸的直線與曲線E相交于A,B兩點(diǎn),直線l:y=mx+n與曲線E交于C,D兩點(diǎn),與線段AB相交于一點(diǎn)(與A,B不重合).
(1)求曲線E的方程;
(2)當(dāng)直線l與圓x2+y2=1相切時(shí),四邊形ABCD的面積是否有最大值?若有,求出其最大值及對(duì)應(yīng)的直線l的方程;若沒(méi)有,請(qǐng)說(shuō)明理由.
【答案】見(jiàn)解析
【解析】
解:(1)設(shè)點(diǎn)P(x,y),由題意可得,
=,
整理可得+y2=1.
∴曲線E的方程是+y2=1.
(2)設(shè)C(x1,y1),D(x2,y2),由已知可得|AB|=.
當(dāng)m=0時(shí),不合題意.
當(dāng)m≠0時(shí),由直線l與圓x2+y2=1相切,可得=1,即m2+1=n2.
聯(lián)立消去y得x2+2mnx+n2-1=0,
∴Δ=4m2n2-4 (n2-1)=2m2>0,
則x1=,x2=,
∴S四邊形ACBD=|AB||x2-x1|==≤,
當(dāng)且僅當(dāng)2|m|=,即m=±時(shí)等號(hào)成立,此時(shí)n=±,經(jīng)檢驗(yàn)可知,直線y=x-和直線y=-x+符合題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若對(duì)任意及任意, ,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)當(dāng)時(shí), 為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)曲線C1:-=1(a>0,b>0)的左焦點(diǎn)F1作曲線C2:x2+y2=a2的切線,設(shè)切點(diǎn)為M,直線F1M交曲線C3:y2=2px(p>0)于點(diǎn)N,其中曲線C1與C3有一個(gè)共同的焦點(diǎn),若|MF1|=|MN|,則曲線C1的離心率為( )
A. B. -1 C. +1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線C:y2=4x,過(guò)點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(1)若AP⊥AQ,證明:直線PQ過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(2)假設(shè)直線PQ過(guò)點(diǎn)T(5,-2),請(qǐng)問(wèn)是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】葫蘆島市某高中進(jìn)行一項(xiàng)調(diào)查:2012年至2016年本校學(xué)生人均年求學(xué)花銷(單位:萬(wàn)元)的數(shù)據(jù)如下表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
年求學(xué)花銷 | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2012年至2016年本校學(xué)生人均年求學(xué)花銷的變化情況,并預(yù)測(cè)該地區(qū)2017年本校學(xué)生人均年求學(xué)花銷情況.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=aln x+ (a∈R).
(1)當(dāng)a=1時(shí),求f(x)在x∈[1,+∞)內(nèi)的最小值;
(2)若f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)求證ln(n+1)> +++…+ (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), , .
(1)當(dāng)時(shí),求的極值;
(2)令,求函數(shù)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x-3|-|x+1|,x∈R.
(1)解不等式f(x)<-1;
(2)設(shè)函數(shù)g(x)=|x+a|-4,且g(x)≤f(x)在x∈[-2,2]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com