已知拋物線的頂點在坐標原點
,焦點
在
軸上,拋物線上的點
到
的距離為2,且
的橫坐標為1.直線
與拋物線交于
,
兩點.
(1)求拋物線的方程;
(2)當直線
,
的傾斜角之和為
時,證明直線
過定點.
試題分析:(1)設拋物線方程為
,由拋物線的定義及
即可求得
的值;(2)先設點
,
,然后將直線方程與拋物線方程聯(lián)立消去
得
,根據(jù)二次方程根與系數(shù)的關系表示出
,設直線
,
的傾斜角分別為
,斜率分別為
,則
,進而根據(jù)正切的兩角和公式可知
,其中
,
,代入
求得
和
的關系式,此時使
有解的
有無數(shù)組,把直線方程整理得
,推斷出直線
過定點
.
試題解析:(1)設拋物線方程為
由拋物線的定義知
,又
2分
所以
,所以拋物線的方程為
4分
(2)設
,
聯(lián)立
,整理得
(依題意
)
,
6分
設直線
,
的傾斜角分別為
,斜率分別為
,則
8分
其中
,
,代入上式整理得
所以
即
10分
直線
的方程為
,整理得
所以直線
過定點
12分.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線C:y2=2px(p>0)的焦點為F,拋物線C與直線l1:y=-x的一個交點的橫坐標為8.
(1)求拋物線C的方程;
(2)不過原點的直線l2與l1垂直,且與拋物線交于不同的兩點A、B,若線段AB的中點為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過拋物線
y2=4
x的焦點
F的直線交該拋物線于
A,
B兩點.若|
AF|=3,
則|
BF|=________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
的焦點為
,點
為該拋物線上的動點,又點
,則
的最小值是(。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
y2=8
x上的點(
x0,
y0)到拋物線焦點的距離為3,則|
y0|=( ).
A. | B.2 | C.2 | D.4 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
的焦點
,該拋物線上的一點
到
軸的距離為3,則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知拋物線
,過其焦點且斜率為-1的直線交拋物線于
兩點,若線段
的中點的縱坐標為-2,則該拋物線的準線方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設拋物線C:
的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0, 2),則C的方程為
.
查看答案和解析>>