已知。求證:。
證明見解析
本試題主要是考查了線面平行的判定定理的運用。
證明:過a作平面,使它與相交,交線為c。,,,所以。所以?己司C合線面平行的判定與性質(zhì)。較易。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
如圖,四棱錐的底面是正方形,,點E在棱PB上。

(Ⅰ)求證:平面;
(Ⅱ)當且E為PB的中點時,求AE與平
面PDB所成的角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖 5,已知正方形ABCD在水平面上的正投影(投影線垂直于投影面)是四邊形,其中A與A '重合,且BB'<DD'<CC'.
(1)證明AD'//平面BB'C'C,并指出四邊形AB'C'D’的形狀;
(2)如果四邊形中AB'C'D’中,,正方形的邊長為,
求平面ABCD與平面AB'C'D’所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

  在直三棱柱中,="2" ,.點分別是 ,的中點,是棱上的動點.
(I)求證:平面;
(II)若//平面,試確定點的位置,
并給出證明;
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,圓柱底面的直徑長度為,為底面圓心,正三角形的一個頂點在上底面的圓周上,為圓柱的母線,的延長線交于點的中點為.

(1)  求證:平面⊥平面;
(2)  求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b是兩條異面直線,直線ca,那么c與b的位置關系是(  )
A.一定是異面B.一定是相交C.不可能平行D.可能相交

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,平面,底面為直角梯形,,,
(Ⅰ)求異面直線所成角的大小;
(Ⅱ)求直線與平面所成角的正切值;
(Ⅲ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,多面體FE-ABCD中,ABCD和ACFE都是直角梯形,DC∥AB,AE∥CF,平面ACFE⊥平面ABCD,AD=DC=CF=2AE=,∠ACF=∠ADC=。
(I)求證:BC⊥平面ACFE;
(II)求二面角B-FE-D的平面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐中,底面是直角梯形,是線段上不同于的任意一點,且

(1)求證:
(2)求證:;
(3)求三棱錐的體積。

查看答案和解析>>

同步練習冊答案