【題目】已知定點(diǎn),定直線,動點(diǎn)到點(diǎn)的距離與到直線的距離之比等于.

(1)求動點(diǎn)的軌跡的方程;

(2)設(shè)軌跡軸負(fù)半軸交于點(diǎn),過點(diǎn)作不與軸重合的直線交軌跡于兩點(diǎn),直線分別交直線于點(diǎn).試問:在軸上是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】(1) ;(2)在軸上存在定點(diǎn),使得.

【解析】試題分析:

(1)設(shè)出點(diǎn)的坐標(biāo),結(jié)合題意可得動點(diǎn)的軌跡的方程是;

(2)設(shè)出直線方程,聯(lián)立直線與橢圓的方程,討論可得在軸上存在定點(diǎn),使得.

試題解析:

(1)設(shè)點(diǎn),依題意有,化簡整理,得,即為動點(diǎn)的軌跡的方程.

(2)根據(jù)題意可設(shè)直線的方程為,代入,整理得,設(shè),則, .又易知,所以直線的方程為: ,直線的方程為: ,從而得, ,所以 .所以當(dāng),即

時, ,故在軸上存在定點(diǎn),使得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)x2g(x)x1.

(1)若存在xR使f(x)<b·g(x),求實(shí)數(shù)b的取值范圍;

(2)設(shè)F(x)f(x)mg(x)1mm2,且|F(x)|上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點(diǎn)B1到平面BDC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若的極值點(diǎn),求的極大值;

(2)求實(shí)數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)當(dāng)m=7時,求函數(shù)f(x)的定義域;

(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)镽的奇函數(shù)y=f(x)的導(dǎo)函數(shù)為y=f′(x),當(dāng)x≠0時, >0,若a=f(1),b=﹣2f(﹣2),c=(ln )f(ln ),則a,b,c的大小關(guān)系正確的是(
A.a<c<b
B.b<c<a
C.a<b<c
D.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A. ,“”是“”的必要不充分條件

B. 為真命題”是“為真命題” 的必要不充分條件

C. 命題“,使得”的否定是:“

D. 命題:“”,則是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中, .

(1)證明:數(shù)列為等差數(shù)列;

(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案