【題目】已知函數(shù)f(x)=3sin(2x+ )的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下: ①圖象C關(guān)于點(diǎn)( ,0)對(duì)稱;
②圖象C關(guān)于直線x= 對(duì)稱;
③由圖象C向右平移 個(gè)單位長(zhǎng)度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為 .
其中正確的結(jié)論序號(hào)是 . (把你認(rèn)為正確的結(jié)論序號(hào)都填上)
【答案】①③
【解析】解:對(duì)于①,函數(shù)f(x)=3sin(2x+ )中,f( )=3sin(2× + )=0, ∴f(x)的圖象C關(guān)于點(diǎn)( ,0)對(duì)稱,命題正確;
對(duì)于②,當(dāng)x= 時(shí),f( )=3sin(2× + )=3sin ,
∴f(x)的圖象C不關(guān)于直線x= 對(duì)稱,命題錯(cuò)誤;
對(duì)于③,f(x﹣ )=3sin[2×(x﹣ )+ ]=3sin2x,
即圖象C向右平移 個(gè)單位長(zhǎng)度得到y(tǒng)=3sin2x的圖象,命題正確;
對(duì)于④,當(dāng)x∈(﹣ , )時(shí),2x+ ∈(0,2π),
∴函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)無(wú)單調(diào)性,命題錯(cuò)誤;
對(duì)于⑤,函數(shù)|f(x)+1|=|3sin(2x+ )+1|的最小正周期為T(mén)= =π,命題錯(cuò)誤;
綜上,正確的結(jié)論序號(hào)是①③.
所以答案是:①③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與圓 且與橢圓相交于兩點(diǎn).
(1)若直線恰好經(jīng)過(guò)橢圓的左頂點(diǎn),求弦長(zhǎng)
(2)設(shè)直線的斜率分別為,判斷是否為定值,并說(shuō)明理由
(3)求,面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,記.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cosA= ,b=5c.
(1)求sinC;
(2)若△ABC的面積S= sinBsinC,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且2an+Sn=An2+Bn+C.
(1)當(dāng)A=B=0,C=1時(shí),求an;
(2)若數(shù)列{an}為等差數(shù)列,且A=1,C=﹣2. ①設(shè)bn=2nan , 求數(shù)列{bn}的前n項(xiàng)和;
②設(shè)cn= ,若不等式cn≥ 對(duì)任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ | 0 | π | 2π | ||
x | |||||
Asin(ωx+φ) | 3 | 0 |
(1)請(qǐng)將上表空格中的數(shù)據(jù)在答卷的相應(yīng)位置上,并求函數(shù)f(x)的解析式;
(2)若y=f(x)的圖象上所有點(diǎn)向左平移 個(gè)單位后對(duì)應(yīng)的函數(shù)為g(x),求當(dāng)x∈[﹣ , ]時(shí),函數(shù)y=g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的方程:x2+y2﹣4x﹣6y+m=0,若圓C與直線a:x+2y﹣3=0相交于M、N兩點(diǎn),且|MN|=2 .
(1)求m的值;
(2)是否存在直線l:x﹣y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn)及橢圓,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于, 兩點(diǎn).
(1)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(2)設(shè)點(diǎn)的坐標(biāo)為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù)
房屋面積(平方米) | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬(wàn)元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫(huà)出散點(diǎn)圖
(2)求線性回歸方程
(3)根據(jù)(2)的結(jié)果估計(jì)房屋面積為150平方米時(shí)的銷售價(jià)格.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com