【題目】已知拋物線的焦點(diǎn)為F,過(guò)點(diǎn)F的直線l交拋物線于A,B兩點(diǎn),以線段AB為直徑的圓交x軸于M,N兩點(diǎn),設(shè)線段AB的中點(diǎn)為Q.若拋物線C上存在一點(diǎn)到焦點(diǎn)F的距離等于3.則下列說(shuō)法正確的是(

A.拋物線的方程是B.拋物線的準(zhǔn)線是

C.的最小值是D.線段AB的最小值是6

【答案】BC

【解析】

求得拋物線的焦點(diǎn)和準(zhǔn)線方程,運(yùn)用拋物線的定義可得p,進(jìn)而得到拋物線方程和準(zhǔn)線方程;求得,設(shè),,直線l的方程為,聯(lián)立拋物線方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式可得線段AB的最小值,可得圓Q的半徑,由中點(diǎn)坐標(biāo)公式可得Q的坐標(biāo),運(yùn)用直角三角形的銳角三角函數(shù)的定義,可得所求的最小值.

拋物線的焦點(diǎn)為,得拋物線的準(zhǔn)線方程為

點(diǎn)到焦點(diǎn)的距離等于3,可得,解得,

則拋物線的方程為,準(zhǔn)線為,故A錯(cuò)誤,B正確;

由題知直線的斜率存在,

設(shè),,直線的方程為,

,消去,

所以,

所以,所以AB的中點(diǎn)Q的坐標(biāo)為,

,故線段AB的最小值是4,即D錯(cuò)誤;

所以圓Q的半徑為,

在等腰中,,

當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以的最小值為,即C正確,

故選:BC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐與直四棱柱組合而成的幾何體中,四邊形是菱形,,,平面,的中點(diǎn).

1)證明:平面

2)動(dòng)點(diǎn)在線段上(包括端點(diǎn)),若二面角的余弦值為,求的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1) 討論的單調(diào)性;

(2) 設(shè),當(dāng)時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)設(shè)為函數(shù)的導(dǎo)函數(shù),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若函數(shù)上有最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求的單調(diào)區(qū)間;

(2)若上成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓 ()的一個(gè)焦點(diǎn)點(diǎn)為橢圓內(nèi)一點(diǎn),若橢圓上存在一點(diǎn),使得,則橢圓的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)的取值范圍;

(Ⅱ)記兩個(gè)極值點(diǎn)為,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與過(guò)原點(diǎn)的直線恰有四個(gè)交點(diǎn),設(shè)四個(gè)交點(diǎn)中橫坐標(biāo)最大值為,則( )

A. B. C. 0 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案