【題目】已知函數(shù)的圖象與過原點的直線恰有四個交點,設(shè)四個交點中橫坐標最大值為,則( )
A. B. C. 0 D. 2
【答案】A
【解析】分析:依題意,過原點的直線與函數(shù)y=|cosx|(x≥0)在區(qū)間(,2π)內(nèi)的圖象相切,利用導(dǎo)數(shù)知識可求得切線方程,利用直線過原點,可求得θ=-,代入所求關(guān)系式即可求得答案.
詳解::∵函數(shù)f(x)=|cosx|(x≥0)的圖象與過原點的直線恰有四個交點,∴直線與函數(shù)y=|cosx|(x≥0)在區(qū)間(,2π)內(nèi)的圖象相切,在區(qū)間(,2π)上,y的解析式為y=cosx,故由題意切點坐標為(θ,cosθ),∴切線斜率k=y′=-sinx|x=θ=-sinθ,∴由點斜式得切線方程為:y-cosθ=-sinθ(x-θ),即 y=-sinθx+θsinθ+cosθ,∵直線過原點,∴θsinθ+cosθ=0,得θ=-,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨立性檢驗的方法調(diào)查高中生的寫作水平與離好閱讀是否有關(guān),隨機詢問120名高中生是否喜好閱讀,利用2×2列聯(lián)表,由計算可得K2=4.236
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,可得正確的結(jié)論是( )
A.有95%的把握認為“寫作水平與喜好閱讀有關(guān)”
B.有97.5%的把握認為“寫作水平與喜好閱讀有關(guān)”
C.有95%的把握認為“寫作水平與喜好閱讀無關(guān)”
D.有97.5%的把握認為“寫作水平與喜好閱讀無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐S-ABCD中,平面,底面ABCD為直角梯形,,,且
(Ⅰ)求與平面所成角的正弦值.
(Ⅱ)若E為SB的中點,在平面內(nèi)存在點N,使得平面,求N到直線AD,SA的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對“年月在北京召開的第十三屆全國人民代表大會第二次會議和政協(xié)第十三屆全國委員會第二次會議”的關(guān)注度,某部門從年齡在歲到歲的人群中隨機調(diào)查了人,并得到如圖所示的年齡頻率分布直方圖,在這人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計結(jié)果如表所示:
年齡 | 關(guān)注度非常高的人數(shù) |
(1)由頻率分布直方圖,估計這人年齡的中位數(shù)和平均數(shù);
(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過的前提下,認為以歲為分界點的不同人群對“兩會”的關(guān)注度存在差異?
(3)按照分層抽樣的方法從年齡在歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在歲以下的概率是多少.
歲以下 | 歲以上 | 總計 | |
非常高 | |||
一般 | |||
總計 |
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若四面體的三組對棱分別相等,即,給出下列結(jié)論:
①四面體每組對棱相互垂直;
②四面體每個面的面積相等;
③從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大而小于;
④連接四面體每組對棱中點的線段相互垂直平分.
其中正確結(jié)論的序號是__________. (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域為R的奇函數(shù),當x<0時,.
(1)求f(2)的值;
(2)用定義法判斷y=f(x)在區(qū)間(-∞,0)上的單調(diào)性.
(3)求的解析式
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當時,,
(Ⅰ)證明是奇函數(shù);
(Ⅱ)證明在上是減函數(shù);
(III)若,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,直線的極坐標方程為,現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點分別為曲線、曲線上的動點,點坐標為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com