已知數(shù)列的首項,且 
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和

(1) ;(2) .

解析試題分析:(1)由,得,故構(gòu)成首項為,公比的等比數(shù)列,可求出,即可求出的通項公式;(2)求出數(shù)列的通項公式為,再利用錯位相減即可求出結(jié)果.
(1)由,得,故構(gòu)成首項為,公比的等比數(shù)列.                                .3分
所以,即.                      .5分
(2)注意到.                 .7分
所以,  ①,
  ②,
②-①,得:
.                              .12分.
考點:1.數(shù)列的遞推公式;2.等比數(shù)列的通項公式3.錯位相減法求和.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

在等比數(shù)列中,首項為,公比為,項數(shù)為,則其前項和為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將數(shù)列中的所有項按每一行比上一行多兩項的規(guī)則排成如下數(shù)表:

已知表中的第一列數(shù)構(gòu)成一個等差數(shù)列, 記為, 且, 表中每一行正中間一個數(shù)構(gòu)成數(shù)列, 其前n項和為.
(1)求數(shù)列的通項公式;(2)若上表中, 從第二行起, 每一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列, 公比為同一個正數(shù), 且.①求;②記, 若集合M的元素個數(shù)為3, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分10分)已知數(shù)列的首項,,,
(1)求證:數(shù)列為等比數(shù)列;
(2)若,求最大的正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,已知為常數(shù)),,,(1)求數(shù)列的通項公式;(2)求所有滿足等式成立的正整數(shù),.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,.
(1)求的值;
(2)求證:是等比數(shù)列,并求的通項公式;
(3)數(shù)列滿足,數(shù)列的前n項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•天津)已知數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設cn=a2n+1﹣a2n﹣1,n∈N*,證明{cn}是等比數(shù)列
(Ⅲ)設Sn為{an}的前n項和,證明++…++≤n﹣(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列的前項和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當時,數(shù)列滿足,求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足=1,.
(1)證明是等比數(shù)列,并求的通項公式;
(2)證明:.

查看答案和解析>>

同步練習冊答案