【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.
【答案】(1)x2+y2=4.(2)直線l的斜率為±2.
【解析】
試題(1)先根據(jù)圓心到切線距離等于半徑求,再根據(jù)標(biāo)準(zhǔn)式寫圓方程(2)由題意得OM與AB互相垂直且平分,即得原點(diǎn)O到直線l的距離,再根據(jù)點(diǎn)到直線距離公式求直線斜率
試題解析:(1)設(shè)圓O的半徑長為r,因?yàn)橹本x-y-4=0與圓O相切,所以 r==2.
所以圓O的方程為 x2+y2=4.
(2)假設(shè)存在點(diǎn)M,使得四邊形OAMB為菱形,則OM與AB互相垂直且平分,
所以原點(diǎn)O到直線l:y=kx+3的距離d=|OM|=1.所以=1,解得k2=8,即k=±2,經(jīng)驗(yàn)證滿足條件.所以存在點(diǎn)M,使得四邊形OAMB為菱形,此時(shí)直線l的斜率為±2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=.
(1)化簡f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一場娛樂晚會(huì)上,有5位民間歌手(1到5號)登臺(tái)演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在3至5號中隨機(jī)選2名.觀眾乙和丙對5位歌手的演唱沒有偏愛,因此在1至5號中選3名歌手.
(1)求觀眾甲選中3號歌手且觀眾乙未選中3號歌手的概率;
(2)表示3號歌手得到觀眾甲、乙、丙的票數(shù)之和,求“”的事件概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若函數(shù)為定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若函數(shù)存在兩個(gè)極值點(diǎn), ,且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,若對任意,都有,則稱數(shù)列具有性質(zhì)P.
(1)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,試判斷數(shù)列是否具有性質(zhì)P;
(2)若正項(xiàng)等差數(shù)列具有性質(zhì)P,求數(shù)列的公差;
(3)已知正項(xiàng)數(shù)列具有性質(zhì)P,,且對任意,有,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)(其中).
(1)當(dāng)時(shí),求不等式的解集;
(2)若關(guān)于的不等式恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com