精英家教網 > 高中數學 > 題目詳情

【題目】渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數據的莖葉圖如圖所示.

(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;

(2)公司結合這次測試成績對員工的績效獎金進行調整(績效獎金方案如下表),若以甲部門這10人的樣本數據來估計該部門總體數據,且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于的人數為,求的分布列及數學期望.

【答案】(1);(2)詳見解析.

【解析】試題分析:

(1)大于85分的有5人。(2)甲部門中任選一人績效工資不低于的概率為,二項分布。

試題解析:

(1)

(2)甲部門中任選一人績效工資不低于的概率為,

所以的可能取值為

;

的分布列為:

的期望為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在海岸A處,發(fā)現北偏東45°方向,距A處( ﹣1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10 海里/小時的速度追截走私船,此時走私船正以10海里/小時的速度從B處向北偏東30°的方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 .

(1)若存在極值點1,求的值;

(2)若存在兩個不同的零點,求證: 為自然對數的底數, ).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數據的莖葉圖如圖1所示:

(1)比較兩組數據的分散程度(只需要給出結論),并求出甲組數據的頻率分布直方圖如圖2中所示的值;

(2)現從兩組數據中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 ,且 ,f(x)= ﹣2λ| |(λ為常數), 求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,圓的極坐標方程為,直線與圓交于, 兩點.

(1)求圓的直角坐標方程及弦的長;

(2)動點在圓上(不與, 重合),試求的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】以下四個命題中:
①為了了解800名學生對學校某項教改試驗的意見,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40.
②線性回歸直線方程 恒過樣本中心( , ),且至少過一個樣本點;
③在某項測量中,測量結果ξ服從正態(tài)分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)內取值的概率為0.1,則ξ在(2,3)內取值的概率為0.4;
其中真命題的個數為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,直線與拋物線交于兩點.

(Ⅰ)若直線過焦點,且與圓交于(其中軸同側),求證: 是定值;

(Ⅱ)設拋物線點的切線交于點,試問: 軸上是否存在點,使得為菱形?若存在,請說明理由并求此時直線的斜率和點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了研究一片大約一萬株樹木的生長情況,隨機測量了其中100株樹木的底部周長(單位:cm),根據所得數據畫出的樣本頻率分布直方圖如圖,那么在這片樹木中底部周長大于100cm的株樹大約中(
A.3000
B.6000
C.7000
D.8000

查看答案和解析>>

同步練習冊答案