【題目】在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處( ﹣1)海里的B處有一艘走私船,在A處北偏西75°方向,距A處2海里的C處的緝私船奉命以10 海里/小時(shí)的速度追截走私船,此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°的方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時(shí)間.

【答案】解:如圖所示,設(shè)緝私船追上走私船需t小時(shí), 則有CD= ,BD=10t.在△ABC中,
∵AB= ﹣1,AC=2,
∠BAC=45°+75°=120°.
根據(jù)余弦定理可求得BC=
∠CBD=90°+30°=120°.
在△BCD中,根據(jù)正弦定理可得
sin∠BCD= ,
∵∠CBD=120°,∴∠BCD=30°,∠BDC=30°,
∴BD=BC= ,則有
10t= ,t= =0.245(小時(shí))=14.7(分鐘).
所以緝私船沿北偏東60°方向,需14.7分鐘才能追上走私船.

【解析】設(shè)緝私船追上走私船需t小時(shí),進(jìn)而可表示出CD和BD,進(jìn)而在△ABC中利用余弦定理求得BC,進(jìn)而在△BCD中,根據(jù)正弦定理可求得sin∠BCD的值,進(jìn)而求得∠BDC=∠BCD=30°進(jìn)而求得BD,進(jìn)而利用BD=10t求得t.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,設(shè)
(Ⅰ)求B 的值
(Ⅱ)求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖直三棱柱, , 分別為、的中點(diǎn)。

求證:(1)平面;

(2)∥平面。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

3,對于區(qū)間上的任意兩個(gè)不相等的實(shí)數(shù),都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣ ,0),B( ,0),P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),直線PA與PB交于點(diǎn)P,且它們的斜率之積是﹣
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點(diǎn),當(dāng)線段MN的中點(diǎn)在直線x+2y=0上時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)求方程f(x)=0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積為(
A.4π
B.6π
C.8π
D.10π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若 (tanx+sinx)﹣ |tanx﹣sinx|﹣k≥0在x∈[ , π]恒成立,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】渝州集團(tuán)對所有員工進(jìn)行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.

(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;

(2)公司結(jié)合這次測試成績對員工的績效獎(jiǎng)金進(jìn)行調(diào)整(績效獎(jiǎng)金方案如下表),若以甲部門這10人的樣本數(shù)據(jù)來估計(jì)該部門總體數(shù)據(jù),且以頻率估計(jì)概率,從甲部門所有員工中任選3名員工,記績效獎(jiǎng)金不小于的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案