【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現(xiàn)在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數(shù)據(jù)的莖葉圖如圖1所示:
(1)比較兩組數(shù)據(jù)的分散程度(只需要給出結(jié)論),并求出甲組數(shù)據(jù)的頻率分布直方圖如圖2中所示的值;
(2)現(xiàn)從兩組數(shù)據(jù)中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.
【答案】(1)甲組數(shù)據(jù)更集中,乙組數(shù)據(jù)更分散, =0.05, =0.02, =0.01.(2)
【解析】試題分析:(1)根據(jù)數(shù)據(jù)集中程度確定分散程度,利用頻率等于頻數(shù)除以總數(shù)得對應(yīng)區(qū)間概率,再除以組距得值;(2)甲班獲獎4人,乙班獲獎5人,所以總事件數(shù)為,其中甲班學生成績高于乙班學生成績的事件數(shù)有9個(枚舉法),最后根據(jù)古典概型概率求法求概率
試題解析:(I)由莖葉圖可知,甲組數(shù)據(jù)更集中,乙組數(shù)據(jù)更分散=0.05, =0.02, =0.01.
(II)由莖葉圖知:甲班獲獎4人,乙班獲獎5人,所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值;
(2)若時,函數(shù)有且只有一個零點,求實數(shù)的值;
(3若,對于區(qū)間上的任意兩個不相等的實數(shù),都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 , ,且 ,f(x)= ﹣2λ| |(λ為常數(shù)),求:
(1) 及| |;
(2)若f(x)的最小值是 ,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在圓: 上,而為在軸上的投影,且點滿足,設(shè)動點的軌跡為曲線.
(1)求曲線的方程;
(2)若是曲線上兩點,且, 為坐標原點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】渝州集團對所有員工進行了職業(yè)技能測試從甲、乙兩部門中各任選10名員工的測試成績(單位:分)數(shù)據(jù)的莖葉圖如圖所示.
(1)若公司決定測試成績高于85分的員工獲得“職業(yè)技能好能手”稱號,求從這20名員工中任選三人,其中恰有兩人獲得“職業(yè)技能好能手”的概率;
(2)公司結(jié)合這次測試成績對員工的績效獎金進行調(diào)整(績效獎金方案如下表),若以甲部門這10人的樣本數(shù)據(jù)來估計該部門總體數(shù)據(jù),且以頻率估計概率,從甲部門所有員工中任選3名員工,記績效獎金不小于的人數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】10名同學參加投籃比賽,每人投20球,投中的次數(shù)用莖葉圖表示(如圖),設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有( )
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=log (x2﹣ax+3)在(﹣∞,1)上單調(diào)遞增,則a的范圍是( )
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com