【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
【答案】【解答】(I)x∈(0,+∞),f′(x)=1﹣ = ,當x∈(0,1)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減;當x∈(1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增.∴當x=1時,函數(shù)f(x)取得極小值即最小值,f(1)=1﹣0﹣2=﹣1.
(II)不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立k< (x>1).
令g(x)= (x>1).g′(x)= ,由于x∈(1,+∞)時,f′(x)>0,∴函數(shù)f(x)單調(diào)遞增.
∵f(1)=﹣1<0,∴函數(shù)f(x)只有一個零點x0,x0﹣lnx0﹣2=0.
又f(3)=1﹣ln3<0,f(4)=2﹣ln4>0,∴x0∈(3,4).
當x∈(1,x0)時,f(x0)<0,∴g′(x)<0,函數(shù)g(x)單調(diào)遞減;當x∈(x0,+∞)時,f(x0)>0,∴g′(x)>0,函數(shù)g(x)單調(diào)遞增.∴g(x)min=g(x0)= = =x0∈(3,4),
∴kmax=3.
【解析】(I)x∈(0,+∞),,利用導(dǎo)數(shù)研究其單調(diào)性即可得出當x=1時,函數(shù)f(x)取得極小值即最小值;
(II)不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立k< (x>1).令g(x)= (x>1),利用導(dǎo)數(shù)研究其單調(diào)性極值即可求出。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ2(1+3sin2θ)=4,曲線C2: (θ為參數(shù)).
(Ⅰ)求曲線C1的直角坐標方程和C2的普通方程;
(Ⅱ)極坐標系中兩點A(ρ1 , θ0),B(ρ2 , θ0+ )都在曲線C1上,求 + 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(2x+ )+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移 個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奶茶店對某時間段的奶茶銷售量及其價格進行調(diào)查,統(tǒng)計出售價元和銷售量杯之間的一組數(shù)據(jù)如下表所示:
價格 | 5 | 5.5 | 6.5 | 7 |
銷售量 | 12 | 10 | 6 | 4 |
通過分析,發(fā)現(xiàn)銷售量對奶茶的價格具有線性相關(guān)關(guān)系.
(1)求銷售量對奶茶的價格的回歸直線方程;
(2)欲使銷售量為13杯,則價格應(yīng)定為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)用五點法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;
(2)指出f(x)的周期、振幅、初相、對稱軸;
(3)此函數(shù)圖象由y=sinx的圖象怎樣變換得到?(注:y軸上每一豎格長為1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a和b是計算機在區(qū)間(0,3)上產(chǎn)生的隨機數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域為R的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線x2=4y的焦點F的直線l與拋物線相交于A、B兩點.
(1)設(shè)拋物線在A、B處的切線的交點為M,若點M的橫坐標為2,求△ABM的外接圓方程.
(2)若直線l與橢圓 + =1的交點為C,D,問是否存在這樣的直線l使|AF||CF|=|BF||DF|,若存在,求出l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):
車速x(km/h) | 60 | 70 | 80 | 90 | 100 |
事故次數(shù)y | 1 | 3 | 6 | 9 | 11 |
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程=x+;
(Ⅲ)試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測在2016年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車速達到110km/h時,可能發(fā)生的交通事故次數(shù).
(附:b=,=-,其中,為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段、現(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.
分數(shù)(分數(shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎.如果前三道題都答錯,就不再答第四題.某同學(xué)進入決賽,每道題答對的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com