【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域?yàn)镽的概率為 .
【答案】
【解析】解:由已知,a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),對應(yīng)區(qū)域的面積為4, 因?yàn)楹瘮?shù)f(x)=lg(ax2+4x+4b)的值域?yàn)镽(實(shí)數(shù)集),所以(ax2+4x+4b)能取得所有的正數(shù),
所以 ,解得ab≤1且a>0,
對應(yīng)的區(qū)域面積為
9﹣ (3﹣ )da=9﹣(3a﹣lna)| =1+2ln3;
由幾何概型的公式得:
所以答案是:
【考點(diǎn)精析】關(guān)于本題考查的幾何概型,需要了解幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體中, 菱形, 是矩形, ⊥平面 , , .
(Ⅰ)異面直線 與 所成的角余弦值;
(Ⅱ)求證平面 ⊥平面 ;
(Ⅲ)在線段 取一點(diǎn) ,當(dāng)二面角 的大小為60°時,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①若,則;
②已知,,且與的夾角為銳角,則實(shí)數(shù) 的取值范圍是;
③已知是平面上一定點(diǎn),是平面上不共線的三個點(diǎn),動點(diǎn)滿足,,則的軌跡一定通過的重心;
④在中,,邊長分別為,則只有一解;
⑤如果△ABC內(nèi)接于半徑為的圓,且
則△ABC的面積的最大值;
其中正確的序號為_______________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在著名的漢諾塔問題中有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上:①每次只能移動一個金屬片;②在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.將n個金屬片從1號針移到3號針最少需要移動的次數(shù)記為f(n),則f(6)=( )
A.31
B.33
C.63
D.65
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬P﹣ABCD中,側(cè)棱PD⊥底面ABCD,且PD=CD,過棱PC的中點(diǎn)E,作EF⊥PB交PB于點(diǎn)F,連接DE,DF,BD,BE.
(1)證明:PB⊥平面DEF.試判斷四面體DBEF是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(2)若面DEF與面ABCD所成二面角的大小為 ,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)有是實(shí)數(shù)解時,求實(shí)數(shù)的取值范圍;
(2)若,對一切恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=cosωx+1,2sinωx,b=cosωx-,cosωx), ω>0.
(Ⅰ)當(dāng)ωx≠kπ+,k∈Z時,若向量c=(1,0),d=(,0),且(a-c)∥(b+d),求4sin2ωx-cos2ωx的值;
(Ⅱ)若函數(shù)f(x)=a·b的圖象的相鄰兩對稱軸之間的距離為,當(dāng)x∈[],g時,求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|,a∈R.
(1)當(dāng)a=1時,解不等式f(x)≤5;
(2)若f(x)≥2對于x∈R恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com