【題目】請你設(shè)計一個包裝盒,是邊長為的正方形硬紙片(如圖1所示),切去陰影部分所示的四個全等的等腰三角形,再沿虛線折起,使得,,,四個點重合于圖2中的點,正好形成一個正四棱錐形狀的包裝盒(如圖2所示),設(shè)正四棱錐的底面邊長為.
(1)若要求包裝盒側(cè)面積不小于,求的取值范圍;
(2)若要求包裝盒容積最大,試問應(yīng)取何值?并求出此時包裝盒的容積.
【答案】(1)(2)當(dāng)時,包裝盒容積最大為
【解析】
(1)結(jié)合已知可建立側(cè)面積關(guān)于的函數(shù)關(guān)系,然后由側(cè)面積不小于,可建立關(guān)于的不等式,即可求得的取值范圍;
(2)先利用表示出的函數(shù)關(guān)系,結(jié)合導(dǎo)數(shù)可求其最大值.
(1)在圖1中連結(jié),交于點,設(shè)與交于點,在圖2中連結(jié),
因為是邊長為的正方形,所以,
由,得,,
因為,即,所以.
因為,
由,得,所以.
答:的取值范圍是.
(2)因為在中,,
所以,
,,
設(shè),,
所以,
令,得或(舍去).
列表得,
8 | |||
+ | 0 | - | |
極大值 |
所以當(dāng)時,函數(shù)取得極大值,也是最大值,
所以當(dāng)時,的最大值為.
答:當(dāng)時,包裝盒容積最大為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,分別是橢圓的左右兩個頂點,圓的半徑為,過點作圓的切線,切點為,在軸的上方交橢圓于點.
(1)求直線的方程;
(2)求的值;
(3)設(shè)為常數(shù),過點作兩條互相垂直的直線,分別交橢圓于點,分別交圓于點,記三角形和三角的面積分別為.求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中a為常數(shù),設(shè)e為自然對數(shù)的底數(shù).
(1)當(dāng)時,求過切點為的切線方程;
(2)若在區(qū)間上的最大值為,求a的值;
(3)若不等式恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:()的左右焦點分別為,,點在橢圓上,且.
(1)求橢圓的方程;
(2)點P,Q在橢圓上,O為坐標原點,且直線,的斜率之積為,求證:為定值;
(3)直線l過點且與橢圓交于A,B兩點,問在x軸上是否存在定點M,使得為常數(shù)?若存在,求出點M坐標以及此常數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直四棱柱的側(cè)棱長為,底面是邊長的矩形,為的中點,
(1)求證:平面,
(2)求異面直線與所成的角的大。ńY(jié)果用反三角函數(shù)表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),有下述命題:①若是奇函數(shù),則的圖象關(guān)于點對稱;②函數(shù)的圖象關(guān)于直線對稱,則為偶函數(shù);③若對,有,則2是的一個周期;④函數(shù)與的圖象關(guān)于直線對稱.其中正確的命題是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計費;②行駛時間不超過分時,按元/分計費;超過分時,超出部分按元/分計費.已知王先生家離上班地點公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間 (分)是一個隨機變量.現(xiàn)統(tǒng)計了次路上開車花費時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:
時間(分) | ||||
頻數(shù) |
將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用(元)與用車時間(分)的函數(shù)關(guān)系式;(2)若王先生一次開車時間不超過分為“路段暢通”,設(shè)表示3次租用新能源分時租賃汽車中“路段暢通”的次數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足,.
(1)若,求數(shù)列的通項公式;
(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;
(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
(本題滿分15分)已知m>1,直線,
橢圓,分別為橢圓的左、右焦點.
(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓交于兩點,,
的重心分別為.若原點在以線段
為直徑的圓內(nèi),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com