關于的方程,給出下列四個命題:
①存在實數(shù),使得方程恰有2個不同實根; ②存在實數(shù),使得方程恰有4個不同實根;
③存在實數(shù),使得方程恰有5個不同實根; ④存在實數(shù),使得方程恰有8個不同實根;
其中假命題的個數(shù)是( )
A.0 | B.1 | C.2 | D.3 |
A
解析試題分析:關于x的方程可化為(1)
或(-1<x<1)(2)
①當k=-2時,方程(1)的解為±,方程(2)無解,原方程恰有2個不同的實根;
②當k=時,方程(1)有兩個不同的實根±,方程(2)有兩個不同的實根±,即原方程恰有4個不同的實根;
③當k=0時,方程(1)的解為-1,+1,±,方程(2)的解為x=0,原方程恰有5個不同的實根;
④當k=時,方程(1)的解為±,±,方程(2)的解為±,±,
即原方程恰有8個不同的實根.
∴四個命題都是真命題.故選A。
考點:本題主要考查函數(shù)方程思想,分類討論思想。
點評:中檔題,通過討論x的范圍,將方程中的絕對值符號去掉,這是一般思路。而k實施分類討論又是基于函數(shù)值域。
科目:高中數(shù)學 來源: 題型:單選題
若存在實數(shù)x∈[2,4],使x2-2x+5-m<0成立,則m的取值范圍為
A.(13,+∞) | B.(5,+∞) | C.(4,+∞) | D.(-∞,13) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,不規(guī)則四邊形ABCD中:AB和CD 是線段,AD和BC是圓弧,直線l⊥AB于E,當l從左至右移動(與線段AB有公共點)時,把四邊形ABCD分成兩部分,設AE=x,左側部分面積為y,則y關于x的大致圖象為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com