【題目】某中學(xué)舉行的“新冠肺炎”防控知識閉卷考試比賽,總分獲得一等獎、二等獎、三等獎的代表隊人數(shù)情況如下表,該校政教處為使頒獎儀式有序進(jìn)行,氣氛活躍,在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取16人在前排就坐,其中一等獎代表隊有6人.
(1)求二等獎代表隊的男生人數(shù);
(2)從前排就坐的三等獎代表隊員5人(2男3女)中隨機(jī)抽取3人上臺領(lǐng)獎,請求出只有一個男生上臺領(lǐng)獎的概率;
(3)抽獎活動中,代表隊員通過操作按鍵,使電腦自動產(chǎn)生[2,2]內(nèi)的兩個均勻隨機(jī)數(shù)x,y,隨后電腦自動運行如圖所示的程序框圖的相應(yīng)程序,若電腦顯示“中獎”,則代表隊員獲相應(yīng)獎品;若電腦顯示“謝謝”,則不中獎,求代表隊隊員獲得獎品的概率.
【答案】(1)30;(2);(3).
【解析】
(1)先設(shè)季軍隊的男運動員人數(shù)為n,由分層抽樣的方法得關(guān)于n的等式,即可解得n;
(2)設(shè)男生為A1,A2,女生為B1,B2,B3,隨機(jī)抽取3人,利用列舉法寫出所有基本事件和只有一個男生上臺領(lǐng)獎基本事件,最后利用概率公式即可計算得解;
(3)由框圖得到,點(x,y)滿足條件,其表示的區(qū)域是圖中陰影部分,利用幾何概型的計算公式即可得到代表隊隊員獲得獎品的概率.
(1)設(shè)代表隊共有n人,則,
所以n=160,則三等獎代表隊的男生人數(shù)為160(30+30+20+20+30)=30,
故所求二等獎代表隊的男生人數(shù)為30人.
(2)設(shè)男生為A1,A2,女生為B1,B2,B3,隨機(jī)抽取3人,包括的基本事件為A1A2B1,A1A2B2,A1A2B3,A1B1B2,
A1B1B3,A1B2B3,A2B1B2,A2B1B3,A2B2B3,B1B2B3,個數(shù)為10個,
只有一個男生上臺領(lǐng)獎基本事件為A1B1B2,A1B1B3,A1B2B3,A2B1B2,A2B1B3,A2B2B3,個數(shù)為6個,
所以只有一個男生上臺領(lǐng)獎的概率為.
(3)試驗的全部結(jié)果所構(gòu)成的區(qū)域為Ω=,
面積為SΩ=4×4=16,
事件A表示代表隊隊員獲得獎品,所構(gòu)成的區(qū)域為A=,
如圖陰影部分的面積為:SA=4,
這是一個幾何概型,所以P(A).
即代表隊隊員獲得獎品的概率為.
【點晴】
本小題主要考查古典概型及其概率計算公式、程序框圖、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點. 為橢圓的右焦點, 為橢圓上關(guān)于原點對稱的兩點,連接分別交橢圓于兩點.
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵若,求的值;
⑶設(shè)直線, 的斜率分別為, ,是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面凸六邊形的邊長相等,其中為矩形,.將,分別沿,折至,,且均在同側(cè)與平面垂直,連接,如圖所示,E,G分別是,的中點.
(1)求證:多面體為直三棱柱;
(2)求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,直線過橢圓的左焦點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與軸交于點是橢圓上的兩個動點,的平分線在軸上,.試判斷直線是否過定點,若過定點,求出定點坐標(biāo);若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正項數(shù)列的首項為,且當(dāng)數(shù)列是公比為的等比數(shù)列時,則稱數(shù)列為“數(shù)列”.
(1)已知數(shù)列的通項公式為,證明:數(shù)列為“數(shù)列”;
(2)若數(shù)列為“數(shù)列”,且對任意,、、成等差數(shù)列,公差為.
①求與間的關(guān)系;
②若數(shù)列為遞增數(shù)列,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)|2x﹣3|,g(x)|2x+a+b|.
(1)解不等式f(x)x2;
(2)當(dāng)a0,b0時,若F(x)f(x)+g(x)的值域為[5,+∞),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是邊長為4的正三角形,且,,,,M為AB中點.
(Ⅰ)證明:平面ADE;
(Ⅱ)求直線CA與平面BCDE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某地區(qū)小學(xué)的期末考試中抽取部分學(xué)生的數(shù)學(xué)成績,由抽查結(jié)果得到如圖的頻率分布直方圖,分?jǐn)?shù)落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些學(xué)生的分?jǐn)?shù)落在區(qū)間內(nèi)的頻率;
(2)若將頻率視為概率,從該地區(qū)小學(xué)的這些學(xué)生中隨機(jī)抽取3人,記這3人中成績位于區(qū)間內(nèi)的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六,八是中國人的吉利數(shù)字,所以好多器都做成六棱形和八棱形,數(shù)學(xué)李老師有一個正六棱柱形狀的筆筒,底面邊長為6cm,高為18cm(底部及筒壁厚度忽略不計),一長度為cm的圓鐵棒l(粗細(xì)忽略不計)斜放在筆筒內(nèi)部,l的一端置于正六柱某一側(cè)棱的展端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為_____cm2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com