【題目】以下說法錯誤的是( )

A.復數(shù)滿足,則復數(shù)在復平面上對應的點的軌跡為直線.

B.上連續(xù)可導的函數(shù),若,則為極值點.

C.,,,則.

D.為拋物線的兩點,為坐標原點,若,則直線過定點.

【答案】ABD

【解析】

根據(jù)復數(shù)的幾何意義,可判斷A選項;根據(jù)函數(shù)的單調(diào)性,判斷B選項;根據(jù)向量模的計算公式,判斷C選項;根據(jù)直線與拋物線的綜合,判斷D選項.

對于A選項,設復數(shù),因為

所以,即,

表示復平面內(nèi)的點到定點,的距離的和等于定值(與兩定點間的距離相等),因此復數(shù)在復平面上對應的點的軌跡為以為端點的線段,故A錯;

對于B選項,若,則,由得,,但函數(shù)上為增函數(shù),無極值,故B錯;

對于C選項,因為,,,

.C正確;

對于D選項,由題意,設,直線的方程為:),

,所以,因此,

,所以,即,即,

所以;即直線過定點,故D.

故選:ABD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】華為手機作為華為公司三大核心業(yè)務之一,2018年的銷售量躍居全球第二名,某機構隨機選取了100名華為手機的顧客進行調(diào)查,并將這人的手機價格按照,,…分成組,制成如圖所示的頻率分布直方圖,其中.

1)求,的值;

2)求這名顧客手機價格的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表);

3)利用分層抽樣的方式從手機價格在的顧客中選取人,并從這人中隨機抽取人進行回訪,求抽取的人手機價格在不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)= ,若x1,x2R,且x1x2,使得fx1)=fx2),則實數(shù)a的取值范圍是( 。

A. [23]∪(﹣∞,﹣5]B. (﹣∞,2)∪(3,5

C. [2,3]D. [5+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)一批產(chǎn)品需要進行質(zhì)量檢驗,檢驗方案是:先從這批產(chǎn)品中任取4件作檢驗,這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n。如果n=3,再從這批產(chǎn)品中任取4件作檢驗,若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;如果n=4,再從這批產(chǎn)品中任取1件作檢驗,若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗;其他情況下,這批產(chǎn)品都不能通過檢驗。

假設這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨立

(1)求這批產(chǎn)品通過檢驗的概率;

(2)已知每件產(chǎn)品檢驗費用為100元,凡抽取的每件產(chǎn)品都需要檢驗,對這批產(chǎn)品作質(zhì)量檢驗所需的費用記為X(單位:元),求X的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調(diào)查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數(shù)量單位:萬只與相應年份序號的數(shù)據(jù)表和散點圖如圖所示,根據(jù)散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數(shù)單位:個關于x的回歸方程

年份序號x

1

2

3

4

5

6

7

8

9

年養(yǎng)殖山羊萬只

根據(jù)表中的數(shù)據(jù)和所給統(tǒng)計量,求y關于x的線性回歸方程參考統(tǒng)計量:,;

試估計:該縣第一年養(yǎng)殖山羊多少萬只

到第幾年,該縣山羊養(yǎng)殖的數(shù)量與第一年相比縮小了?

附:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,,,,E為AB的中點沿CE折起,使點B到達點F的位置,且平面CEF與平面ADCE所成的二面角為

求證:平面平面AEF;

求直線DF與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,,求實數(shù)a的取值范圍;

時,曲線和曲線是否存在公共切線?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了111日至115日的白天平均氣溫°C)與該奶茶店的這種飲料銷量(杯),得到如下數(shù)據(jù):


111

112

113

114

115

平均氣溫°C

9

10

12

11

8

銷量(杯)

23

25

30

26

21

1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;

2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程

(參考公式:.)

查看答案和解析>>

同步練習冊答案