【題目】如圖所示的程序框圖表示求算式“2×3×5×9×17×33”之值,則判斷框內(nèi)不能填入( 。
A.k≤33
B.k≤38
C.k≤50
D.k≤65
【答案】D
【解析】解:由題設(shè)條件可以看出,此程序是一個(gè)求幾個(gè)數(shù)的連乘積的問題,
第一次乘入的數(shù)是2,由于程序框圖表示求算式“2×3×5×9×17×33”之值,
以后所乘的數(shù)依次為3,5,9,17,33
2×3×5×9×17×33六個(gè)數(shù)的積故程序只需運(yùn)行6次,運(yùn)行6次后,k值變?yōu)?5,
當(dāng)k=33時(shí),應(yīng)選擇“是”,
當(dāng)k=65時(shí),應(yīng)選“否”,
所以判斷框內(nèi)不能填入“k≤65”.
所以答案是:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái) 中, , 分別是 , 的中點(diǎn), , 平面 ,且 .
(1)證明: 平面 ;
(2)若 , 為等邊三角形,求四棱錐 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 中,點(diǎn) 在線段 上, , ,沿直線 將 翻折成 ,使點(diǎn) 在平面 上的射影 落在直線 上.
(Ⅰ)求證:直線 平面 ;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖四邊形 中, 為的 內(nèi)角 的對(duì)邊,且滿足 .
(Ⅰ)證明: 成等差數(shù)列;
(Ⅱ)已知 求四邊形 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 和 兩個(gè)空白框中,可以分別填入( 。
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )
A.k<14?
B.k<15?
C.k<16?
D.k<17?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域?yàn)镽的周期函數(shù),最小正周期為2,且f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①已知 ,“ 且 ”是“ ”的充分條件;
②已知平面向量 , 是“ ”的必要不充分條件;
③已知 ,“ ”是“ ”的充分不必要條件;
④命題 “ ,使 且 ”的否定為 “ ,都有 且 ”.其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2017年第一季度五省情況圖,則下列陳述正確的是( )
①2017年第一季度 總量和增速均居同一位的省只有1個(gè);
②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長;
③去年同期的總量前三位是江蘇、山東、浙江;
④2016年同期浙江的總量也是第三位.
A. ①② B. ②③④ C. ②④ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com