【題目】通常表明地震能量大小的尺度是里氏震級,其計算公式為:,其中,是被測地震的最大振幅,是“標(biāo)準(zhǔn)地震”的振幅使用標(biāo)準(zhǔn)地震振幅是為了修正測震儀距實際震中的距離造成的偏差

1假設(shè)在一次地震中,一個距離震中100千米的測震儀記錄的地震最大振幅是30,此時標(biāo)準(zhǔn)地震的振幅是0001,計算這次地震的震級精確到01;

25級地震給人的震感已比較明顯,計算8級地震的最大振幅是5級地震的最大振幅的多少倍?

以下數(shù)據(jù)供參考:,

【答案】14521000

【解析】

試題分析:1把最大振幅和標(biāo)準(zhǔn)振幅直接代入公式M=lgA-lg求解;2利用對數(shù)式和指數(shù)式的互化由M=lgA-lg得A=,把M=8和M=5分別代入公式作比后即可得到答案

試題解析:1

因此,這次地震的震級為里氏45

2可得,,

當(dāng),地震的最大振幅為;當(dāng),地震的最大振幅為;所以,兩次地震的最大振幅之比是:

答:8級地震的最大振幅是5級地震的最大振幅的1000

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖所示,則它的外接球表面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)、一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

1求直方圖中的值;

2設(shè)該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;

3若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線與橢圓的一個公共點,分別為該橢圓的左右焦點,設(shè)取得最小值時橢圓為

I求橢圓的方程;

II已知是橢圓上關(guān)于軸對稱的兩點,是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值,并說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各式: 

(1);

(2)已知,則

(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對稱;

(4)函數(shù)的定義域是R,則m的取值范圍是;

(5)函數(shù)的遞增區(qū)間為.

正確的______________________.(把你認(rèn)為正確的序號全部寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圍建一個面積為360的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45/m,新墻的造價為180/m,設(shè)利用的舊墻的長度為(單位:),修建此矩形場地圍墻的總費用為(單位:元)

1)將表示為的函數(shù);

2)試確定,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|-1x2},B={x|m-1x2m+1},已知BA.

(1)當(dāng)xN時,求集合A的子集的個數(shù);

(2)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國慶節(jié)進行社會實踐,對歲的人群隨機抽取人進行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碩族,否則稱為非低碳族,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

(1)補全頻率分布直方圖并求的值(直接寫結(jié)果);

(2)從年齡段在低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領(lǐng)隊,求選取的2名領(lǐng)隊中至少有1人年齡在歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示該同學(xué)為這個開學(xué)季購進了160盒該產(chǎn)品,以單位:盒,表示這個開學(xué)季內(nèi)的市場需求量,單位:元表示這個開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤

I根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的眾數(shù)和中位數(shù);

II表示為的函數(shù);

III根據(jù)直方圖估計利潤不少于4800元的概率

查看答案和解析>>

同步練習(xí)冊答案