【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EAD不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】試題分析:(1)先由平面幾何知識(shí)證明,再由線面平行判定定理得結(jié)論;(2)先由面面垂直性質(zhì)定理得平面,則 ,再由ABAD及線面垂直判定定理得AD⊥平面ABC,即可得ADAC.

試題解析:證明:(1)在平面內(nèi),因?yàn)?/span>ABAD, ,所以.

又因?yàn)?/span>平面ABC 平面ABC,所以EF∥平面ABC.

(2)因?yàn)槠矫?/span>ABD⊥平面BCD

平面平面BCD=BD

平面BCD, ,

所以平面.

因?yàn)?/span>平面,所以 .

ABAD, , 平面ABC, 平面ABC,

所以AD⊥平面ABC,

又因?yàn)?/span>AC平面ABC,

所以ADAC.

點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類型:(1證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】內(nèi)有一點(diǎn)P(-1,2),AB為過(guò)點(diǎn)P且傾斜角為的弦.

(1)當(dāng)時(shí),求AB的長(zhǎng);

(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人相約于下午1:00~2:00之間到某車站乘公共汽車外出,他們到達(dá)車站的時(shí)間是隨機(jī)的.設(shè)在下午1:00~2:00之間該車站有四班公共汽車開(kāi)出,開(kāi)車時(shí)間分別是1:15,1:30,1:45,2:00.求他們?cè)谙率銮闆r下乘同一班車的概率:

(1)約定見(jiàn)車就乘;

(2)約定最多等一班車.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)、為常數(shù)).

(Ⅰ)若,解不等式

(Ⅱ)若,當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,△ABC是正三角形,AD=CD

(1)證明:ACBD;

(2)已知△ACD是直角三角形,AB=BD.若E為棱BD上與D不重合的點(diǎn),且AEEC,求四面體ABCE與四面體ACDE的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是等腰梯形,,平面.

)求證:平面;

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=5,AC=12,BC=13,一只小螞蟻從△ABC的內(nèi)切圓的圓心處開(kāi)始隨機(jī)爬行,當(dāng)螞蟻(在三角形內(nèi)部)與△ABC各邊距離不低于1個(gè)單位時(shí)其行動(dòng)是安全的,則這只小螞蟻在△ABC內(nèi)任意行動(dòng)時(shí)安全的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列各題中pq的什么條件.

(1)p:|x|=|y|,q:x=y;

(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;

(3)p:四邊形的對(duì)角線互相平分,q:四邊形是矩形;

(4)p:x2+y2=r2(r>0)與直線ax+by+c=0相切,q:c2=(a2+b2)r2.

查看答案和解析>>

同步練習(xí)冊(cè)答案