【題目】設(shè)是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,且,.
(1)求,的通項(xiàng)公式;
(2)設(shè),,若,,成等差數(shù)列(、為正整數(shù)且),求和的值;
(3)設(shè)為數(shù)列的前項(xiàng)和,是否存在實(shí)數(shù),使得對(duì)一切均成立?若存在,求出的最大值;若不存在,說(shuō)明理由.
【答案】(1),;(2),;(3)存在,最大值為,理由見(jiàn)解析
【解析】
(1)由題可設(shè)數(shù)列的公差為,的公比為,可得,即可求出,從而可求得與的通項(xiàng)公式;
(2)由可求得的表達(dá)式,結(jié)合,,成等差數(shù)列,可得,進(jìn)而可求得的等式關(guān)系,結(jié)合的取值范圍,可求出答案;
(3)先求出的表達(dá)式,將與代入不等式中,可得對(duì)一切成立,即求在的最小值即可.
(1)依題意,設(shè)數(shù)列的公差為,的公比為,
則,解得,,.
(2),
依題意,,則(、為正整數(shù)且),
化簡(jiǎn)得:,又,得,解得,
,
因?yàn)?/span>為正整數(shù),,所以,
即,此時(shí).
(3)依題意:,
則對(duì)一切成立,
即對(duì)一切成立,
即求在的最小值,
設(shè)時(shí),取得最小值,
則,
即,
解得,即.
故在的最小值為.
所以存在最大值為滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有50名學(xué)生,男女人數(shù)不相等。隨機(jī)詢問(wèn)了該班5名男生和5名女生的某次數(shù)學(xué)測(cè)試成績(jī),用莖葉圖記錄如下圖所示,則下列說(shuō)法一定正確的是( )
A. 這5名男生成績(jī)的標(biāo)準(zhǔn)差大于這5名女生成績(jī)的標(biāo)準(zhǔn)差。
B. 這5名男生成績(jī)的中位數(shù)大于這5名女生成績(jī)的中位數(shù)。
C. 該班男生成績(jī)的平均數(shù)大于該班女生成績(jī)的平均數(shù)。
D. 這種抽樣方法是一種分層抽樣。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且時(shí),總有成立.
求a的值;
判斷并證明函數(shù)的單調(diào)性;
求在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:
(1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,.某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元:
①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中),且曲線在點(diǎn)處的切線垂直于直線.
(1)求的值及此時(shí)的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,,分別是棱,的中點(diǎn),為棱上一點(diǎn),且平面.
(1)證明:為中點(diǎn);
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了6組觀測(cè)數(shù)據(jù)于下表中,通過(guò)散點(diǎn)圖可以看出樣本點(diǎn)分布在一條指數(shù)型函數(shù)y=的圖象的周圍.
(1)試求出y關(guān)于x的上述指數(shù)型的回歸曲線方程(結(jié)果保留兩位小數(shù));
(2)試用(1)中的回歸曲線方程求相應(yīng)于點(diǎn)(24,17)的殘差.(結(jié)果保留兩位小數(shù))
溫度x(°C) | 20 | 22 | 24 | 26 | 28 | 30 |
產(chǎn)卵數(shù)y(個(gè)) | 6 | 9 | 17 | 25 | 44 | 88 |
z=lny | 1.79 | 2.20 | 2.83 | 3.22 | 3.78 | 4.48 |
幾點(diǎn)說(shuō)明:
①結(jié)果中的都應(yīng)按題目要求保留兩位小數(shù).但在求時(shí)請(qǐng)將的值多保留一位即用保留三位小數(shù)的結(jié)果代入.
②計(jì)算過(guò)程中可能會(huì)用到下面的公式:回歸直線方程的斜率==,截距.
③下面的參考數(shù)據(jù)可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓為左右焦點(diǎn),為短軸端點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為,且,的面積為.
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)動(dòng)直線橢圓有且僅有一個(gè)公共點(diǎn),且與直線相交于點(diǎn).試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn)?若存在求出點(diǎn)的坐標(biāo),若不存在.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域在上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù),
(2)若實(shí)數(shù)滿足,求實(shí)數(shù)的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com