【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點(diǎn)C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且PE.

(1)求證:平面PBC 平面DEBC;

(2)求三棱錐P-EBC的體積.

【答案】(1)見解析; (2).

【解析】

1)根據(jù)折疊前后關(guān)系得PC⊥CD,根據(jù)平幾知識(shí)得BE//CD,即得PC⊥BE,再利用線面垂直判定定理得EB⊥平面PBC,最后根據(jù)面面垂直判定定理得結(jié)論,(2)先根據(jù)線面垂直EB⊥平面PBC得高,再根據(jù)等積法以及三棱錐體積公式得結(jié)果.

(1)證明:∵AB⊥BE,AB⊥CD,∴BE//CD,

∵AC⊥CD,∴PC⊥CD,∴PC⊥BE,

又BC⊥BE,PC∩BC=C,

∴EB⊥平面PBC,

又∵EB平面DEBC,∴平面PBC 平面DEBC;

(2)解法1:∵AB//DE,結(jié)合CD//EB 得BE=CD=2,

由(1)知EB⊥平面PBC,∴EB⊥PB,由PE,

∴△PBC為等邊三角形, ∴,

.

解法2:∵AB//DE,結(jié)合CD//EB 得BE=CD=2,

由(1)知EB⊥平面PBC,∴EB⊥PB,由PE

, ∴△PBC為等邊三角形,

取BC的中點(diǎn)O,連結(jié)OP,則,∵PO⊥BC,∴PO⊥平面EBCD,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求證:

(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)若,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,,,.

1)求點(diǎn)的坐標(biāo);

2)過點(diǎn)的直線與平行四邊形圍成的區(qū)域(包括邊界)有公共點(diǎn),求直線的傾斜角的取值范圍;

3)對(duì)角線所在的直線與圓沒有交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直線坐標(biāo)系中,定義為兩點(diǎn)切比雪夫距離,又設(shè)點(diǎn)P上任意一點(diǎn)Q,的最小值為點(diǎn)P到直線切比雪夫距離記作給出下列四個(gè)命題:

①對(duì)任意三點(diǎn)A、B、C,都有

②已知點(diǎn)P(3,1)和直線

③到定點(diǎn)M的距離和到M切比雪夫距離相等點(diǎn)的軌跡是正方形;

④定點(diǎn)動(dòng)點(diǎn)滿足則點(diǎn)P的軌跡與直線(為常數(shù))有且僅有2個(gè)公共點(diǎn)。

其中真命題的個(gè)數(shù)是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy中,O為坐標(biāo)原點(diǎn),已知點(diǎn),P是動(dòng)點(diǎn),且三角形POQ的三邊所在直線的斜率滿足.

(1)求點(diǎn)P的軌跡C的方程;

(2)F作傾斜角為60°的直線L,交曲線CA,B兩點(diǎn),求AOB的面積;

(3)過點(diǎn)任作兩條互相垂直的直線,分別交軌跡 C 于點(diǎn)ABM,N,設(shè)線段AB,MN的中點(diǎn)分別為E,F.,求證:直線EF恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知直線l過點(diǎn),它的一個(gè)方向向量為

①求直線l的方程;

②一組直線,,,都與直線l平行,它們到直線l的距離依次為d,,,),且直線恰好經(jīng)過原點(diǎn),試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);

2)在坐標(biāo)平面上,是否存在一個(gè)含有無窮多條直線,,的直線簇,使它同時(shí)滿足以下三個(gè)條件:①點(diǎn);②,其中是直線的斜率,分別為直線x軸和y軸上的截距;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為

1)求以橢圓C的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn)的橢圓方程;

2)過橢圓C的左焦點(diǎn)且傾斜角為的直線與橢圓交于A,B兩點(diǎn),求的面積;

3)過定點(diǎn)的直線交橢圓CAB兩點(diǎn),求弦AB中點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長為4,焦距為

求橢圓的方程;

過動(dòng)點(diǎn)的直線交軸與點(diǎn),交于點(diǎn) (在第一象限),且是線段的中點(diǎn).過點(diǎn)軸的垂線交于另一點(diǎn),延長于點(diǎn).

設(shè)直線的斜率分別為,證明為定值;

求直線的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果你留心使會(huì)發(fā)現(xiàn),汽車前燈后的反射鏡呈拋物線的形狀,把拋物線沿它的對(duì)稱軸旋轉(zhuǎn)一周,就會(huì)形成一個(gè)拋物面.這種拋物面形狀,正是我們熟悉的汽車前燈的反射鏡形狀,這種形狀使車燈既能夠發(fā)出明亮的、照射很遠(yuǎn)的平行光束,又能發(fā)出較暗的,照射近距離的光線.我們都知道常規(guī)的前照燈主要是由燈泡、反射鏡和透鏡三部分組成,明亮的光束,是由位于拋物面形狀反射鏡焦點(diǎn)的光源射出的,燈泡位于拋物面的焦點(diǎn)上,燈泡發(fā)出的光經(jīng)拋物面反射鏡反射形成平行光束,再經(jīng)過配光鏡的散射、偏轉(zhuǎn)作用,以達(dá)到照亮路面的效果,這樣的燈光我們通常稱為遠(yuǎn)光燈:而較暗的光線,不是由反射鏡焦點(diǎn)的光源射出的,光線的行進(jìn)與拋物線的對(duì)稱軸不平行,光線只能向上和向下照射,所以照射距離并不遠(yuǎn),如果把向上射出的光線遮。嚐艟椭荒馨l(fā)出向下的、射的很近的光線了.請(qǐng)用數(shù)學(xué)的語言歸納表達(dá)遠(yuǎn)光燈的照明原理,并證明.

查看答案和解析>>

同步練習(xí)冊答案