【題目】(1)已知直線l過點,它的一個方向向量為.
①求直線l的方程;
②一組直線,,,,,都與直線l平行,它們到直線l的距離依次為d,,,,,(),且直線恰好經(jīng)過原點,試用n表示d的關(guān)系式,并求出直線的方程(用n、i表示);
(2)在坐標平面上,是否存在一個含有無窮多條直線,,,,的直線簇,使它同時滿足以下三個條件:①點;②,其中是直線的斜率,和分別為直線在x軸和y軸上的截距;③.
【答案】(1)①;②,;(2)不存在.
【解析】
(1)根據(jù)直線的方向向量可得直線的斜率,結(jié)合點斜式即可求得直線方程;根據(jù)直線平行且過原點,可得直線的方程,由平行線間距離公式可得n與d的關(guān)系式,設(shè)出直線的方程,根據(jù)點到直線距離公式可求得直線方程.
(2)假設(shè)存在這樣的直線簇.先求得,的表達式,進而表示出.通過迭加法求得,即可證明當時,與不能成立.
(1)①直線l方向向量為
所以直線的斜率為
直線l過點,由點斜式方程可得
即直線l的方程為:;
②直線且經(jīng)過原點,
直線的方程為:
由題意知直線到l的距離為,根據(jù)平行線間距離公式可得
則
設(shè)直線的方程為:
由題意知:直線到直線l的距離為,
所以直線的方程為:;
(2)假設(shè)存在滿足題意的直線簇.由①知的方程為:,,
分別令,得,,
由,即,,
迭加得.
由③知所有的同號,僅討論的情形,
由,
所以
顯然,當時,與矛盾!
故滿足題意的直線簇不存在.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,E為DC的中點,F為線段EC(端點除外)上一動點,現(xiàn)將△AFD沿AF折起,使平面ABD⊥平面ABC,則二面角D﹣AF﹣B的平面角余弦值的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商店為迎接端午節(jié),推出兩款粽子:花生粽和肉粽.為調(diào)查這兩款粽子的受歡迎程度,店員連續(xù)10天記錄了這兩種粽子的銷售量,如下表表示(其中銷售單位:個)
天數(shù) 銷售量 天數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
花生粽 | 103 | 93 | 98 | 93 | 106 | 86 | 87 | 94 | 91 | 99 | 100 |
肉粽 | 88 | 97 | 98 | 95 | 101 | 98 | 103 | 106 | 103 | 111 | 100 |
(1)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖:
(2)統(tǒng)計學知識,請評述哪款粽子更受歡迎;
(3)求肉粽銷售量y關(guān)于天數(shù)t的線性回歸方程,并預估第15天肉粽的銷售量(回歸方程系數(shù)精確到0.1)
參考數(shù)據(jù):,參考公式:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABED中,AB//DE,ABBE,點C在AB上,且ABCD,AC=BC=CD=2,現(xiàn)將△ACD沿CD折起,使點A到達點P的位置,且PE.
(1)求證:平面PBC 平面DEBC;
(2)求三棱錐P-EBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面,垂直于和,為棱上的點,.
(1)若為棱的中點,求證:平面;
(2)當時,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是
(1)命題“,”的否定是“,”;
(2)l為直線,,為兩個不同的平面,若,,則;
(3)給定命題p,q,若“為真命題”,則是假命題;
(4)“”是“”的充分不必要條件.
A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)不等式表示的平面區(qū)別為.區(qū)域內(nèi)的動點到直線和直線的距離之積為2.記點的軌跡為曲線.過點的直線與曲線交于、兩點.
(1)求曲線的方程;
(2)若垂直于軸,為曲線上一點,求的取值范圍;
(3)若以線段為直徑的圓與軸相切,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com