【題目】如圖所示的三棱臺(tái)中,分別為的中點(diǎn),,

1)求證:平面

2)求二面角的余弦值.

【答案】1)詳見(jiàn)解析;(2

【解析】

1)連接,根據(jù)分別為的中點(diǎn),利用三角形中位線(xiàn)得到,再利用線(xiàn)面平行的判定定理證明.

2)易證兩兩垂直,分別以,軸,軸,軸的正方向,建立空間直角坐標(biāo)系,分別求得平面和平面的一個(gè)法向量,代入公式求解.

1)連接,因?yàn)?/span>分別為的中點(diǎn),所以,

因?yàn)?/span>平面平面,

所以平面

2)由(1)得

因?yàn)?/span>,

所以,

又因?yàn)?/span>,

所以平面,

所以,

因?yàn)?/span>,

所以平面

所以兩兩垂直,

分別以,軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系,

,

所以

設(shè)平面的一個(gè)法向量為,

,則

設(shè)平面的一個(gè)法向量為,

,即

,則

,

因?yàn)槎娼?/span>的平面角為銳角,

所以二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(  )

①命題“2是素?cái)?shù)且5是素?cái)?shù)”是真命題

②命題“若x=y,則sinx=siny”的逆命題是真命題

③命題“x0∈R,x02﹣x0﹣2>0”的否定是“x∈R,x2﹣x﹣2≤0”

A. ①② B. ①③ C. ②③ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)曲線(xiàn)的左焦點(diǎn)作曲線(xiàn)的切線(xiàn),設(shè)切點(diǎn)為,延長(zhǎng)交曲線(xiàn)于點(diǎn),其中有一個(gè)共同的焦點(diǎn),若,則曲線(xiàn)的離心率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱(chēng)可入肺顆粒物).為了探究車(chē)流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時(shí)間段車(chē)流量與PM2.5的數(shù)據(jù)如下表:

時(shí)間

周一

周二

周三

周四

周五

車(chē)流量×(萬(wàn)輛)

50

51

54

57

58

PM2.5的濃度(微克/立方米)

60

70

74

78

79

1)根據(jù)上表數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;

2)若周六同一時(shí)間段的車(chē)流量是25萬(wàn)輛,試根據(jù)(1)求出的線(xiàn)性回歸方程,預(yù)測(cè)此時(shí)PM2.5的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線(xiàn)的方程是:,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,ABAD,BCBD,平面ABD⊥平面BCD,點(diǎn)E,F(EAD不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF∥平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)若存在x0∈R,f(x0)x0成立,則稱(chēng)x0f(x)的不動(dòng)點(diǎn).已知f(x)ax2(b1)xb1(a≠0)

(1)當(dāng)a1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)(2)的條件下,若yf(x)圖象上AB兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線(xiàn)ykx對(duì)稱(chēng),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,,,,則所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.

1)求PX=2);

2)求事件X=4且甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案