解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點(diǎn),,是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.
(I);(II)。
解析試題分析:(I)根據(jù),可知a=2,所以再把點(diǎn)A的坐標(biāo)代入橢圓方程求出b的值,求出橢圓的方程.
(II)設(shè)直線AC的方程:,由,得:
點(diǎn)C,同理求出D的坐標(biāo),再利用斜率公式即可證明CD的斜率為定值.
(I)所求橢圓方程…………………3分;
(II)設(shè)直線AC的方程:,由,得:
點(diǎn)C…………………………..5分;
同理 ………………………..6分;
……………………8分;
要使為常數(shù), +(1-)=0,
得…………………………10分.
考點(diǎn):橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.
點(diǎn)評:橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為定值,也就是常數(shù)2a,再根據(jù)其它條件建立關(guān)于b的方程,求出b即可得到橢圓的標(biāo)準(zhǔn)方程.
在證明CD的斜率為定值時,關(guān)鍵是求出點(diǎn)C,D的坐標(biāo),需要用直線方程與橢圓方程聯(lián)立求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線在軸上的截距為,設(shè)直線交橢圓于兩個不同點(diǎn)、,
(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過點(diǎn)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)作軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知橢圓,離心率為的橢圓經(jīng)過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的一個焦點(diǎn)且互相垂直的直線分別與橢圓交于和,是否存在常數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為.
①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長;
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線,焦點(diǎn)為,頂點(diǎn)為,點(diǎn)在拋物線上移動,是的中點(diǎn),是的中點(diǎn),求點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)河上有一拋物線型拱橋,當(dāng)水面距拱頂5時,水面寬為8,一小船寬4,高2,載貨后船露出水面上的部分高,問水面上漲到與拋物線拱頂相距多少米時,小船恰好能通行。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓G:的右焦點(diǎn)F為,G上的點(diǎn)到點(diǎn)F的最大距離為,斜率為1的直線與橢圓G交與、兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(Ⅰ)已知雙曲線C與雙曲線有相同的漸近線,且一條準(zhǔn)線為,求雙曲線C的方程;
(Ⅱ)已知圓截軸所得弦長為6,圓心在直線上,并與軸相切,求該圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com